Средства измерений
Средство измерений – это техническое средство, используемое при измерениях и имеющие нормированные метрологические свойства. К средствам измерений относят меры и измерительные приборы, преобразователи, установки и системы. От средств измерений зависит правильное определение значения измеряемой величины в процессе измерения.
Мера – это средство измерений, предназначенное для воспроизведения физической величины заданного размера. Например, гиря – мера массы, измерительный резистор – мера электрического сопротивления и т.п. К мерам относятся так же стандартные образцы и эталонные вещества.
Стандартный образец – это мера для воспроизведения единиц величин, характеризующих свойства или состав веществ и материалов или среднелегированной стали с аттестованным содержанием химических элементов, образцы шероховатости поверхности.
Эталонное вещество – это вещество с известными свойствами, воспроизводимыми при соблюдении условий приготовления, указанных в утвержденной спецификации, например «чистая» вода, «чистые» газы, «чистые» металлы.
Эталонные вещества воспроизводят строго регламентированный состав веществ и широко используется при производстве количественных химических анализов и в создании реперных точек шкал. Например, «чистый» цинк служит для воспроизведения температуры ≈420 °С.
В случае если мера должна использоваться исключительно со значениями, вычисляемыми согласно инструкции по эксплуатации с учетом поправок, приведенных в сопроводительной документации, то применяют меру не с номинальным, а с действительным значением.
Меры подразделяют на однозначные и многозначные.
Однозначная мера воспроизводит физическую величину одного размера. По сути, она воспроизводит либо единицу измерения, либо некоторое определенное числовое значение данной физической величины. Например, измерительная катушка сопротивления, гиря, плоскопараллельная концевая мера длины, измерительная колба, измерительный резистор, нормальный элемент, конденсатор постоянной емкости.
Из однозначных мер собирают наборы мер. Набор мер – это специально подобранный комплект мер, применяемых не только по отдельности, но и в различных сочетаниях с целью воспроизведения ряда одноименных величин различного размера, например набор измерительных конденсаторов, набор плоскопараллельных концевых мер длины, набор гирь.
Многозначная мера воспроизводит ряд одноименных величин различного размера, например конденсатор переменной емкости, вариометр индуктивности, линейки с миллиметровыми делениями.
Эталонные средства измерений предназначены для передачи размеров единиц физических величин от эталонов или более точных образцовых средств рабочим средствам. Эталонными средствами измерений являются меры, измерительные приборы и устройства, прошедшие метрологическую аттестацию и утвержденные органами государственной или ведомственной метрологической службы в качестве эталонных. По назначению следует различать исходные и подчиненные эталонные средства измерений.
Исходными называют эталонные средства измерений, от которых размер единицы передается с наивысшей в данном подразделении метрологической службы точностью.
Подчиненными называют эталонные средства измерений, которым передается размер единицы от исходного эталонного средства измерений непосредственно или через другие эталонные средства измерений.
В зависимости от погрешности эталонные средства измерений подразделяются на разряды. Для различных видов измерений, проводимых в отрасли, устанавливается различное число разрядов эталонных средств измерений, предусмотренное стандартами на поверочные схемы данного вида средств измерений. Разряды служат основой для их метрологического соподчинения: эталонные средства 1-го разряда поверяются, как правило, непосредственно по рабочим эталонам, а 2-го и последующих разрядов — по эталонным средствам предшествующих разрядов. Например, эталонными мерами электродвижущей силы 1-го разряда служат нормальные элементы с погрешностью ±2·10 -4 %, а эталонными мерами 2-го разряда — нормальные элементы с погрешностью ±5·10 -4 %. Эталонные меры массы (гири) и измерительные приборы для измерения давления делятся на четыре разряда.
Разделение средств измерений на эталонные и рабочие определяется их метрологическим назначением. Различные экземпляры одного и того же средства измерений могут выполнять функции эталонного или рабочего средства. Однако экземпляр средства измерений, выполняющий функции эталонного средства, не используют для обычных технических измерений.
Эталонные средства измерений выполняют в системе обеспечения единства измерений в стране очень ответственную роль, так как они «распространяют» единицы, передавая их размер другим средствам измерений, поэтому они подлежат тщательному хранению и поверку их проводят настолько часто, чтобы была обеспечена требуемая точность и достоверность результатов измерений. Применять их следует только для поверки других средств измерений. Средства измерений, аттестованные в качестве эталонных, допускается применять в качестве рабочих только в особых случаях, с разрешения органа метрологической службы, производившего аттестацию этих средств измерений.
Рабочие средства применяют для измерений, не связанных с передачей размера единиц, то есть они служат для технических измерений в лабораториях или на производстве.
Для эталонного средства измерений не так важно, насколько велики поправки к его показаниям, как важны стабильность и воспроизводимость его показаний. Поэтому к эталонным средствам измерений в отличие от рабочих предъявляют более высокие требования в отношении воспроизводимости показаний. К рабочим же средствам измерений предъявляют специфические требования, связанные с условиями их применения.
Измерительный прибор представляет собой средство измерений, предназначенное для выработки сигнала измерительной информации в форме, доступной для непосредственного восприятия наблюдателем.
Результаты измерений приборами выдаются их отсчетными устройствами. Последние подразделяют на шкальные, цифровые и регистрирующие.
Шкальные отсчетные устройства состоят из шкалы, представляющей собой совокупность отметок и чисел, изображающих ряд последовательных значений измеряемой величины, и указателя (стрелки, электронного луча и др.), связанного с подвижной системой прибора.
Отметки шкалы, у которых проставлено числовое значение, называются числовыми отметками шкалы.
Основными характеристиками шкалы рассматриваемого отсчетного устройства являются: длина деления шкалы — расстояние между осями или центрами двух соседних отметок (штрихов или точек) шкалы, измеренное вдоль ее базовой линии, то есть линии, проходящей через середины ее самых коротких отметок, и цена деления шкалы — значение измеряемой величины, которое вызывает перемещение подвижного элемента отсчетного устройства на одно деление, то есть модуль разности значений измеряемой величины, соответствующих двум соседним отметкам шкалы.
Указанные на шкале наименьшее и наибольшее значения измеряемой величины называются соответственно начальным и конечными значениями шкалы.
Область значений, ограниченная начальным и конечным значениями шкалы, называется диапазоном показаний.
Диапазон измерений — это та часть диапазона показаний, для которой нормированы пределы допускаемых погрешностей средства измерений. Наименьшее и наибольшее значения диапазона измерений называются соответственно нижним и верхним пределами измерений (рис. 1.) В технических приборах диапазон измерений и диапазон показаний, как правило, совпадают.
Значение величины, определяемое по отсчетному устройству средства измерений и выраженное в принятых единицах этой величины, называют показанием средства измерений. Показание может быть выражено как:
где N — отсчет (неименованное число, отсчитанное по отсчетному устройству средства измерений либо полученное счетом последовательных отметок или сигналов); с — постоянная средства измерений (число, именованное в единицах измеряемой величины; Nдел — число делений, подсчитанных по отсчетному устройству); сдел — цена деления шкалы как разность значений величины, соответствующих двум соседним отметкам шкалы.
П р и м е р — На рис. 2 показано различие понятий постоянной прибора с и цены деления сдел, из видно, что максимальный отсчет Nmax = 50, а положению стрелки отвечает отсчет N = 24, Если наибольшее показание вольтметра Umax = 50 В, то постоянная вольтметра:
а показание, отвечающее положению стрелки,
На этой шкале максимальное число делений Nдел max = 25 дел, а положению стрелки отвечает Nдел = 12 дел. Следовательно, цена деления шкалы вольтметра
U = Nдел · сдел = 12 дел · 2 В/дел = 24 В.
Числовые значения с и сдел = сU B/дел зависят от конечного значения шкалы данного диапазона измерений.
Шкалы приборов бывают односторонними (рис. 3), двухсторонними
(рис. 4) и безнулевыми (рис. 5). В односторонних шкалах один из пределов равен нулю.
В двухсторонних шкалах нулевое значение расположено на шкале. В безнулевых — на шкале нет нулевого значения.
В соответствии с ГОСТ 8.401—80 «ГСИ. Классы точности средств измерений. Общие требования» практически равномерной шкалой называется шкала, длина делений которой отличается друг от друга не более чем на 30 % и имеет постоянную цену делений. Существенно неравномерная шкала — это шкала с сужающимися делениями, для которой значение выходного сигнала, соответствующее полусумме верхнего и нижнего пределов диапазона измерений входного (выходного) сигнала, находится в интервале между 65 и 100 % длины шкалы, соответствующей диапазону измерений входного (выходного) сигнала. Степенная шкала — это шкала с расширяющимися или сужающимися делениями, отличная от шкал, указанных выше.
Чувствительность измерительного прибора — это отношение изменения сигнала Δl на выходе измерительного прибора к вызывающему его изменению измеряемой величины ΔА, то есть,
Из формулы следует, что чем меньше изменение измеряемой величины, отмечаемое прибором, тем выше его чувствительность, то есть она обратно пропорциональна цене деления шкалы.
Цифровые отсчетные устройства бывают либо механические, либо световые. Механические отсчетные устройства используют в тех цифровых приборах, у которых измеряемая величина преобразуется в соответствующие углы поворота валов. Световые табло, состоящие, как правило, из системы индикаторных газоразрядных ламп, подсвечивающих те или иные цифры, используются в электронных цифровых приборах, у которых измеряемые величины преобразуются в определенную последовательность импульсных сигналов.
Регистрирующие отсчетные устройства состоят из пишущего или печатного механизма и ленты. Простейшее пишущее устройство представляет собой перо, заполненное чернилами, фиксирующее результат измерения на бумажной ленте. В более сложных устройствах запись результатов измерений может производиться световым или электронным лучом, перемещение которого зависит от значений измеряемых величин.
Измерительные приборы классифицируются по весьма разнообразным признакам, к числу которых относят и рассматриваемые ниже способы определения значений измеряемой величины и образования показаний.
По способу определения значения измеряемой величины приборы делятся на две группы: прямого действия и сравнения.
Приборы прямого действия (непосредственной оценки) позволяют получать значения измеряемой величины на отсчетном устройстве. Такие приборы состоят из нескольких элементов, осуществляющих необходимое преобразование измеряемой величины в сигнал того или иного вида или, если необходимо, усиление этого сигнала, чтобы вызвать перемещение подвижного органа отсчетного устройства. Примером может служить электронный вольтметр, предназначенный для измерения высокочастотного напряжения. Входной сигнал подается на детектор, преобразующий переменное напряжение в постоянное, которое после усиления в усилителе постоянного тока подводится к магнитоэлектрическому вольтметру постоянного тока. Здесь постоянное напряжение, в свою очередь, преобразуется в механический момент, поворачивающий подвижную рамку на угол, пропорциональный значению измеряемого напряжения.
Шкала же вольтметра постоянного тока может быть градуирована в амплитудных или средних квадратических (эффективных) значениях переменного напряжения, подводимого ко входу электронного вольтметра.
Характерной особенностью приборов непосредственной оценки является то, что результаты, полученные с их помощью, не требуют сравнения с показаниями эталонных средств измерений.
К таким приборам относится большая часть вольтметров, амперметров, манометров, термометров и др.
В приборах сравнения значение измеряемой величины определяют сравнением с известной величиной, соответствующей воспроизводящей ее мере, например при измерении массы тел на рычажных весах. Для сравнения измеряемой величины с мерой используют компенсационные или мостовые измерительные цепи. В компенсационных вольтметрах измерение напряжения основано на сравнении измеряемой величины с величиной компенсирующего напряжения, задаваемого мерой напряжения (нормальным элементом или другой эталонной мерой напряжения).
На сравнении измеряемой величины с мерой основана работа грузопоршневых и грузопружинных манометров, где сравниваются силовые эффекты, с которыми действуют на поршень измеряемое давление и мера массы. При измерении линейных размеров тел с использованием концевых мер длины часто используют дифференциальный метод сравнения, то есть для измерения разности между измеряемой величиной и мерой применяют дополнительные приборы непосредственной оценки. Если объектами измерения являются параметры элементов, которые не несут в себе энергии (параметры пассивных элементов), то для сравнения измеряемой величины с мерой чаще всего используют мостовые измерительные схемы. В этих схемах пассивные элементы предварительно активизируются путем подведения для питания моста энергии от специальных источников питания. Сравнение же измеряемой величины, включенной в измерительное плечо моста, с известным значением меры, включенной в плечо сравнения, производят, как правило, нулевым методом, то есть уравновешивая мост путем измерения значения меры. Характерной особенностью приборов, основанных на методе сравнения, является то, что погрешность измерения с их помощью определяется в основном погрешностью мер, с которыми сравнивают измеряемые величины. Следовательно, применение мер более высоких классов точности и разрядов обеспечивает повышение точности измерений.
По способу образования показаний приборы подразделяют на показывающие и регистрирующие Показывающие приборы, в свою очередь, подразделяют на аналоговые и цифровые.
Аналоговые приборы — это, как правило, стрелочные приборы с отсчетными устройствами, состоящими из двух элементов — шкалы и указателя, связанного с подвижной частью прибора. Показания таких приборов являются непрерывной функцией измерений измеряемой величины.
Цифровые измерительные приборы автоматически вырабатывают дискретные сигналы измерительной информации, которые предлагают в цифровой форме. Отсчет у них производится с помощью механических или электронных цифровых отсчетных устройств.
Цифровые измерительные приборы по сравнению со стрелочными имеют
ряд достоинств; процесс измерения автоматизирован, что исключает возникновение погрешностей, обусловленных ошибками оператора; время измерения очень мало; результат измерений, выдаваемый в цифровой форме, легко фиксируется цифропечатающим устройством и удобен для ввода в электронно-вычислительную машину.
Цифровые измерительные приборы широко применяют для измерения электрических напряжений, частоты колебаний, параметров электрических и радиотехнических цепей и многих других физических величин. В последние годы они все чаще заменяют стрелочные приборы.
Регистрирующие измерительные приборы подразделяют на самопишущие (например, барографы, термографы, шлейфовые осциллографы), выдающие показания в форме диаграммы, и печатающие, которые выдают результат измерений в цифровой форме на бумажной ленте. Регистрирующие приборы находят широкое применение при измерении физических величин — параметров процессов или свойств объектов в динамических режимах, когда непрерывно изменяются те или иные условия измерения (температура, давление и т.п.).
Измерительный преобразователь — средство измерений, служащее для выработки измерительной информации в форме, удобной для передачи, дальнейшего преобразования, обработки и хранения, но не поддающейся непосредственному восприятию наблюдателем.
Преобразуемая физическая величина называется входной, а результат преобразования — выходной величиной. Связь между выходной и входной величинами преобразователя устанавливается функцией преобразования.
Измерительные преобразователи являются составной частью измерительных приборов, различных измерительных систем, системы автоматического контроля или регулирования тех или иных процессов.
Основное требование к измерительным преобразователям — точная передача информации, то есть минимальные потери информации, иначе говоря, минимальные погрешности. Измерительное преобразование — это отражение размера одной физической величины размером другой физической величины, функционально с ней связанной. На принципе измерительного преобразования построены практически все средства измерений, так как любое средство измерений использует те или иные функциональные связи между входной и выходной величинами. Например, в приборах для электрических измерений неэлектрических величин или для измерения геометрических величин, таких как микрометр, когда измеряемая длина отсчитывается по углу поворота микрометрического барабана, или штангенциркуль, когда вместо расстояния между губками штангенциркуля отсчитывается соответствующее расстояние по его шкале. Понятие «измерительный преобразователь» более конкретно, чем «измерительное преобразование», так как одно и то же измерительное преобразование может быть выполнено рядом различных по принципу действия измерительных преобразователей. Например, измерительное преобразование температуры в механическое перемещение может быть выполнено ртутным термометром или биметаллическим элементом либо термопарой, преобразующей температуру в ЭДС, а ЭДС в перемещение указателя.
Измерительный преобразователь, к которому подведена измеряемая величина, называется первичным преобразователем, например термопара в термоэлектрическом термометре.
Измерительный преобразователь, предназначенный для изменения величины в заданное число раз, называется масштабным, например делители напряжений на входе вольтметров или электронных осциллографов, а также измерительные усилители.
Измерительный преобразователь, предназначенный для дистанционной передачи сигнала измерительной информации, называется передающим, например индуктивный и пневматические передающие преобразователи.
Вспомогательным является средство измерений величин, влияющих на метрологические свойства другого средства измерения при его применении или поверке. Например, точность измерения объемного расхода газа или линейных размеров тел зависит от температуры, измеряемой термометром, который и является вспомогательным средством измерений.
Измерительная установка — это совокупность функционально объединенных средств измерений (мер, измерительных приборов, измерительных преобразователей) и вспомогательных устройств, предназначенных для выработки сигналов измерительной информации в форме, удобной для непосредственного восприятия наблюдателем, и расположенных в одном месте.
Создание измерительных установок, называемых также измерительными стендами, позволяет наиболее рационально расположить все требуемые средства измерений и соединить их с объектами измерений для обеспечения наиболее высокой производительности труда на данном рабочем месте (например, на рабочих местах операторов в конкретных условиях производства или поверочных лаборатории). Так создаются измерительные установки (стенды), например, для контроля работоспособности тех или иных технических устройств, для поверки различных средств измерений и т. п.
Измерительные системы предназначены для выработки сигналов измерительной информации в форме, удобной для автоматической обработки, передачи и использования в автоматических системах управления. Их главная цель — автоматизация процесса измерения и использования результатов измерения для автоматического управления различными процессами производства. В состав таких систем могут входить преобразователи одних величин в другие, схемы автоматического регулирования, меры и измерительные приборы. В случае если различные элементы системы разнесены на значительные расстояния друг от друга, связь между ними осуществляется как по проводным, так и проводными каналам.
Средства измерения
Средством измерений (СИ) называют техническое средство (или их комплекс), используемое при измерениях и имеющее нормированные метрологические характеристики. В отличие от таких технических средств, как индикаторы, предназначенных для обнаружения физических свойств (компас, лакмусовая бумага, осветительная электрическая лампочка), СИ позволяют не только обнаружить физическую величину, но и измерить ее, т.е. сопоставить неизвестный размер с известным. Если физическая величина известного размера есть в наличии, то она непосредственно используется для сравнения (измерение плоского угла транспортиром, массы — с помощью весов с гирями). Если же физической величины известного размера в наличии нет, то сравнивается реакция (отклик) прибора на воздействие измеряемой величины с проявившейся ранее
реакцией на воздействие той же величины, но известного размера (измерение силы тока амперметром). Для облегчения сравнения ещё на стадии изготовления прибора отклик на известное воздействие фиксируют на шкале отсчетного устройства, после чего наносят на шкалу деления в кратном и дольном отношении. Описанная процедура называется градуировкой шкалы. При измерении она позволяет по положению указателя получать результат сравнением непосредственно по шкале отношений.
Итак, СИ (за исключением некоторых мер — гирь, линеек) в простейшем случае производят две операции:
— обнаружение физической величины;
— сравнение неизвестного размера с известным или сравнение откликов на воздействие известного и неизвестного размеров.
Другими отличительными признаками СИ являются:
— ≪умение≫ хранить (или воспроизводить) единицу физической величины;
— неизменность размера хранимой единицы.
Если же размер единицы в процессе измерений изменяется более, чем установлено нормами, то с помощью такого средства невозможно получить результат с требуемой точностью. Отсюда следует, что измерять можно только тогда, когда техническое средство, предназначенное для этой цели, может хранить единицу, достаточно неизменную по размеру (во времени).
Классификация средств измерений
СИ можно классифицировать по двум признакам:
По конструктивному исполнению СИ подразделяют на меры, измерительные преобразователи, измерительные приборы, измерительные установки, измерительные системы.
Меры величины — СИ, предназначенные для воспроизведения и (или) хранения физической величины одного или нескольких заданных размеров.
— однозначные (гиря 1 кг, калибр, конденсатор постоянной ёмкости);
— многозначные (масштабная линейка, конденсатор переменной емкости);
— наборы мер (набор гирь, набор калибров).
Набор мер, конструктивно объединенных в единое устройство, в котором имеются приспособления для их соединения в различных комбинациях, называется магазином мер. Примером такого набора может быть магазин электрических сопротивлений, магазин индуктивностей. Сравнение с мерой выполняют с помощью специальных технических средств — компараторов (рычажные весы, измерительный мост и т.д.).
К однозначным мерам можно отнести стандартные образцы (СО). Существуют стандартные образцы состава и стандартные образцы свойств. СО состава вещества (материала) — стандартный образец с установленными значениями величин, характеризующих содержание определенных компонентов в веществе (материале).
СО свойств веществ (материалов) — стандартный образец с установленными значениями величин, характеризующих физические, химические, биологические и другие свойства.
Новые СО допускаются к использованию при условии прохождения ими метрологической аттестации. Указанная процедура — это признание этой меры, узаконенной для применения на основании исследования СО. Метрологическая аттестация проводится органами метрологической службы.
В зависимости от уровня признания (утверждения) и сферы применения различают категории СО — межгосударственные, государственные, отраслевые и СО предприятия (организации).
Измерительные преобразователи (ИП) — СИ, служащие для преобразования измеряемой величины в другую величину или сигнал измерительной информации, удобный для обработки, хранения, дальнейших преобразований. По характеру преобразования различают аналоговые (АП), цифроаналоговые (ЦАП), аналого-цифровые (АЦП) преобразователи. По месту в измерительной цепи различают первичные (ИП, на который непосредственно воздействует измеряемая физическая величина) и промежуточные (ИП, занимающий место в измерительной цепи после первичного ИП) преобразователи.
Конструктивно обособленный первичный ИП, от которого поступают сигналы измерительной информации, является датчиком. Датчик может быть вынесен на значительное расстояние от СИ, принимающего его сигналы. Например, датчики запущенного метеорологического радиозонда передают информацию о температуре, давлении, влажности и других параметрах атмосферы.
Если преобразователи не входят в измерительную цепь и их метрологические свойства не нормированы, то они не относятся к измерительным. Таковы, например, силовой трансформатор в радиоаппаратуре, термопара в термоэлектрическом холодильнике.
Измерительный прибор — СИ, предназначенное для получения значений измеряемой физической величины в установленном диапазоне. Прибор, как правило, содержит устройство для преобразования измеряемой величины и её индикации в форме, наиболее доступной для восприятия. Устройство для индикации имеет шкалу со стрелкой или другим устройством, диаграмму с пером или цифроуказатель, с помощью которых могут быть произведены отсчет или регистрация значений физической величины. В случае сопряжения прибора с мини-ЭВМ отсчет может производиться с помощью дисплея.
По степени индикации значений измеряемой величины измерительные приборы подразделяют на показывающие и регистрирующие. Показывающий прибор допускает только отсчитывание показаний измеряемой величины (микрометр, аналоговый или цифровой вольтметр). В регистрирующем приборе предусмотрена регистрация показаний — в форме диаграммы, путем печатания показаний (термограф или, например, измерительный прибор, сопряженный с ЭВМ, дисплеем и устройством для печатания показаний).
Измерительная установка совокупность функционально объединенных мер, измерительных приборов, измерительных преобразователей и других устройств, предназначенных для измерений одной или нескольких физических величин и расположенных в одном месте. Примером являются установка для измерения удельного сопротивления электротехнических материалов, установка для испытаний магнитных материалов. Измерительную установку, предназначенную для испытаний каких-либо изделий, иногда называют испытательным стендом.
Измерительная система — совокупность функционально объединенных мер, измерительных приборов, измерительных преобразователей, ЭВМ и других технических средств, размещенных в разных точках контролируемого пространства с целью измерений одной или нескольких физических величин, свойственных этому пространству. Примером может служить радионавигационная система для определения местоположения судов, состоящая из ряда измерительных комплексов, разнесенных в пространстве на значительном расстоянии друг от друга.
≪Лицо≫ современной измерительной техники определяется автоматизированными измерительными системами (АИС), информационно-измерительными системами (ИИС), измерительно-вычислительными комплексами (ИВК). Типичная ИИС содержит в своем составе ЭВМ и обеспечивает сбор, обработку и хранение информации, поступающей от многочисленных датчиков, характеризующих состояние объекта или процесса. При этом результаты измерений выдаются как по заранее заданной программе, так и по запросу.
В условиях расширяющейся автоматизации измерительных процессов обработки деталей и сборки узлов и агрегатов, повышения требований к производительности, точности и качеству всё большее значение приобретают автоматические средства измерения и контроля.
Автоматическое средство измерения – это средство измерения, производящее без непосредственного участия человека измерения и все операции, связанные с обработкой результатов измерений, их регистрацией, передачей данных или выработкой управляющего сигнала. Если это средство встроено в автоматическую технологическую линию, оно называется измерительным автоматом или контрольным автоматом.
Автоматические средства измерения классифицируются по степени автоматизации, виду воздействия на технологический процесс, способу преобразования измерительного импульса, месту установки, числу проверяемых параметров.
По метрологическому назначению все СИ подразделяются на два вида:
Рабочие СИ (РСИ) предназначены для проведения технических измерений. По условиям применения они могут быть:
— лабораторными, используемыми при научных исследованиях, проектировании технических устройств, медицинских измерениях;
— производственными, используемыми для контроля характеристик технологических процессов, контроля качества готовой продукции, контроля отпуска товаров;
— полевыми, используемыми непосредственно при эксплуатации таких технических устройств, как самолеты, автомобили, речные и морские суда и др.
К каждому виду РСИ предъявляются специфические требования:
– к лабораторным — повышенная точность и чувствительность;
– к производственным — повышенная стойкость к ударно-вибрационным нагрузкам, высоким и низким температурам;
– к полевым — повышенная стабильность в условиях резкого перепада температур, высокой влажности.
Эталоны являются высокоточными СИ, а поэтому используются для проведения метрологических измерений в качестве средств передачи информации о размере единицы. Размер единицы передаётся ≪сверху вниз≫, от более точных СИ к менее точным ≪по цепочке≫: первичный эталон — вторичный эталон — рабочий эталон 0-го разряда — рабочий эталон 1-го разряда. — рабочее средство измерений.
Передача размера осуществляется в процессе поверки СИ. Целью поверки является установление пригодности СИ к применению. Соподчинение СИ, участвующих в передаче размера единицы от эталона к РСИ, устанавливается в поверочных схемах СИ.
Поверочная схема – это документ, содержащий правила передачи размера единицы от эталона рабочим средствам измерений. Россия располагает самой современной эталонной базой. Она входит в тройку самых совершенных наряду с базами США и Японии. Эталонная база в дальнейшем будет развиваться в количественном и главным образом в качественном отношении. Перспективно создание многофункциональных эталонов, т.е. эталонов, воспроизводящих на единой конструктивной и метрологической основе не одну, а несколько единиц физических величин или одну единицу, но в широком диапазоне измерений. Так, метрологические институты страны создают единый эталон времени, частоты и длины, который позволит, кстати, уменьшить погрешность воспроизведения единицы длины до 1•10 -11 .
Средства измерений. Основные понятия и классификация
Средство измерения — это техническое устройство, предназначенное для выполнения намерений и имеющее нормированные метрологические характеристики.
Средства измерений подразделяются на меры, приборы и преобразователи. В практике находят применение также измерительные системы.
Мера — это средство измерений, предназначенное для воспроизведения физической величины заданного размера. К мерам относят такие средства, как гири (меры массы), резисторы (меры электрического сопротивления), сосуды (меры вместимости) и др. Учитывая ограниченное применение мер в практике измерений, ниже они специально не рассматриваются.
Измерительный прибор — это средство измерений, предназначенное для выработки измерительной информации в форме, доступной для непосредственного восприятия наблюдателем. Измерительные приборы, которые непосредственно воспринимают измеряемую величину, называются приборами прямого, или непосредственного, отсчета.
Измерительные приборы, воспринимающие измеряемую величину, предварительно преобразованную в другую величину, называются вторичными. Различают измерительные приборы аналоговые и цифровые. В аналоговом приборе отсчет показаний производят по шкале, отражающей непрерывную зависимость между измеряемой величиной и перемещением отсчетного устройства. В цифровом приборе измерительная информация выдается с помощью цифрового отсчетного устройства. Измерительные приборы могут быть показывающими, регистрирующими и комбинированными (показывающими и регистрирующими). Регистрация показаний может выполняться с помощью самопишущих или печатающих приборов. Измерительный преобразователь — это средство измерений, предназначенное для выработки измерительной информации в форме, удобной для передачи и обработки. Разделяются измерительные преобразователи на первичные, промежуточные и передающие. Первичным называют преобразователь, к которому подведена измеряемая величина. Иногда эти преобразователи называют датчиками. Промежуточные и передающие преобразователи соответственно воспринимают сигналы, выработанные первичным преобразователем, и обеспечивают дистанционную передачу их. Преобразователи бывают аналоговыми, если входной и выходной сигналы воспроизводятся в аналоговой форме, цифровыми (дискретными), если входной и выходной сигналы представляют собой последовательности импульсов (коды), а также аналого-цифровыми (вход аналоговый, выход цифровой) и цифроаналоговыми (вход цифровой, выход аналоговый). Действующая система приборов (ГСП) предусматривает стандартизованные электрические и пневматические сигналы. В частности, аналоговые электрические сигналы встречаются в следующих основных формах: в виде изменения взаимной индукции в пределах 0—10 мГ или 10-0—10 мГ; в виде сигнала постоянного тока с пределами 0—5: 0—20 и 4—20 мА; в виде сигнала напряжения постоянного тока с пределами 0— 10 и 0—20 В. Наиболее распространенным стандартным пневматическим сигналом является изменение давления в пределах от 0,02 до 0,1 МПа.
Измерительная система — это совокупность средств измерений, вспомогательных устройств и каналов связи, предназначенная для выработки, передачи и обработки измерительной информации. К таким системам относятся, в частности, измерительно-вычислительные комплексы, осуществляющие автоматический сбор и обработку экспериментальных данных.
Ниже перечисляются основные метрологические характеристики средств измерений.
Градуировочная характеристика, или статическая функция преобразован и я,— зависимость между значениями величин на выходе и входе средства измерения в установившемся состоянии, представляемая в табличной, графической или аналитической форме. Начальное и конечное значения отсчетного устройства (шкалы или цифрового отсчетного устройства) — наименьшее и наибольшее значения измеряемой величины, указанные на шкале или воспроизводимые цифровым устройством.
Диапазон показаний — область, ограниченная начальным и конечным значениями отсчетного устройства.
Диапазон измерений (преобразований) — область значений измеряемой величины, для которой нормированы допускаемые погрешности.
Пределы (верхний и нижний) измерений наибольшее и наименьшее значения диапазона измерений.
Абсолютная погрешность — разность между показанием прибора и действительным значением измеряемой величины либо разность между значением измеряемой величины, полученной на выходе преобразователя с помощью градуировочной характеристики, и действительным ее значением на входе.
Относительная погрешность — отношение абсолютной погрешности к действительному значению измеряемой величины. Может выражаться дробью или в процентах.
Приведенная погрешность-— отношение абсолютной погрешности к нормированному значению, например диапазону показаний или измерений.
Статическая погрешность — погрешность (абсолютная или относительная) при постоянной во времени входной величине.
Динамическая погрешность — составляющая погрешности, равная разности между погрешностью в динамическом режиме (при переменной входной величине) и статической погрешностью, соответствующей значению величины в данный момент времени.
Основная погрешность — погрешность при условиях работы, принятых за нормальные.
Дополнительная погрешность — изменение погрешности, вызванное отклонением одной или нескольких влияющих величин от значений, принятых за нормальные.
Предел допускаемой погрешности — наибольшая погрешность, при которой средство измерений может быть признано годным (понятие применимо для основной и дополнительной погрешностей).
Класс точности — обобщенная характеристика, определяемая пределами допускаемых погрешностей. В общем случае понятие класса точности устанавливается для каждого конкретногосредства измерения его технической документацией. Однако в целом ряде случаев класс точности принимают численно равным пределу допускаемой приведенной погрешности относительно диапазона измерений.
Кроме приведенной классификации средства измерений разделяются по следующим основным признакам: назначению, виду измеряемой величины, числу пределов измерений. По назначению средства измерений делятся на рабочие, образцовые и индикаторы. Рабочие средства измерений в свою очередь разделяются на технические и лабораторные. Первые предназначаются для измерений в условиях эксплуатации холодильного оборудования, для контроля за ходом технологических процессов, работой систем автоматики, переналадки оборудования и средств автоматизации. Такие средства измерений имеют, как правило, невысокие точностные характеристики. По конструкции технические средства измерений приспособлены для установки на щитах, в шкафах и непосредственно на оборудовании. Лабораторные средства измерений предназначаются для использования в научно-исследовательской практике, при испытаниях оборудования в стендовых условиях. Отличаются более высокими точностными характеристиками. Конструктивно выполняются обычно в переносном исполнении в основном для установки на лабораторных столах и стойках. Образцовые средства измерений предназначаются для поверки рабочих средств или других менее точных образцовых в условиях специализированных измерительных лабораторий.
По конструкции — это переносные приборы или стационарные установки.
По точностным характеристикам они выше остальных средств измерений. В некоторых случаях возникает необходимость использования в научно-исследовательских работах образцовых (по назначению) средств в качестве рабочих. Такая практика допускается. Однако при этом средство измерений считается не образцовым, а рабочим с соответствующей точностной характеристикой. Индикаторами называют средства измерения, не имеющие нормированных точностных характеристик и служащие для ориентировочной оценки измеряемой величины. По виду измеряемой величины средства измерений делятся в соответствии с классификацией измеряемых величин (см. выше). Название они получают по наименованию измеряемой величины (например, манометр, расходомер, частотомер и т. п.), единицы физической величины (амперметр, вольтметр) либо по характерному признаку своего устройства (например, измерительный мост, термоанемометр).
Широко распространены комбинированные средства измерений, предназначенные для измерения разных величин. Так, в электротехнике применяют ампервольтметры, вольтомметры и др. По числу пределов измерений различают одно-, двух- и многопредельные средства измерений. Однопредельные средства позволяют измерить величину, лежащую в интервале между верхним и нижним пределами измерений. В двух- и многопредельных средствах предусматриваются специальные устройства для переключения пределов, в результате чего расширяется диапазон измерений.
Основные определения
Основой измерений являются наблюдения, которые осуществляются персоналом или автоматическими устройствами. Если для проведения одного измерения производят одно наблюдение, то такой метод измерений называется методом однократных наблюдений. При однократных наблюдениях результат измерения равен результату наблюдения. Измерение дополняется оценкой точности, которая должна быть не хуже, чем определено требованиями. В практике испытаний и исследований, где требуется более высокая точность, прибегают к нескольким наблюдениям для проведения одного измерения.
Такой метод называется методом многократных наблюдений. С помощью этого метода удается учесть влияние некоторых случайных факторов. При многократных наблюдениях результат наблюдений, результат измерения, а также оценку точности получают методами статистической обработки случайных величин. Существует также промежуточный метод, когда для исключения грубых ошибок и повышения надежности измерений выполняют несколько наблюдений, однако дальнейшую обработку проводят без применения статистических методов. Мерой оценки точности измерения является погрешность. Погрешность характеризует отклонение измеренного значения некоторой величины от ее истинного (действительного) значения. Следует различать погрешность измерений, получаемую как результат обработки экспериментальных наблюдений, и нормированную погрешность средства измерения, являющуюся его технической характеристикой. Эти погрешности могут совпадать только в отдельных, частных случаях.
В соответствии с делением измерений погрешности подразделяют на статические и динамические. Ниже под термином «погрешность» будет подразумеваться статическая погрешность. В тех случаях, когда под термином «погрешность» подразумевается динамическая погрешность, это будет специально оговариваться. По своей природе погрешности бывают систематическими и
случайными. Систематическими называют погрешности, которые могут быть заранее обнаружены или предсказаны и которые принципиально могут быть исключены или уменьшены специальными мерами. Систематические погрешности, которые действуют в процессе измерения, называются не исключенными.
Случайными называют непредвиденные погрешности, которые могут быть выявлены только статистической обработкой многократных наблюдений. Частным случаем случайных погрешностей являются грубые ошибки наблюдений, которые выявляются при первичной обработке данных и затем отбрасываются. Поскольку точное значение погрешности обычно не известно, пользуются понятием границы погрешности, т. е. предельной величиной, больше которой (без учета знака) погрешность быть не может.
Если погрешность определяется методом статистической обработки, то пользуются понятием доверительной границы погрешности, которая обозначает, что погрешность не выйдет за границу с доверительной вероятностью, равной заданной.
1.4 Общие сведения о средствах измерений
При помощи средств измерения физическая величина может быть не только обнаружена, но и измерена.
Средства измерения классифицируются по следующим критериям:
- по способам конструктивной реализации;
- по метрологическому предназначению.
По способам конструктивной реализации средства измерения делятся на:
- меры величины;
- измерительные преобразователи;
- измерительные приборы;
- измерительные установки;
- измерительные системы.
Меры величины – это средства измерения определенного фиксированного размера, многократно используемые для измерения. Выделяют:
- однозначные меры;
- многозначные меры;
- наборы мер.
Некоторое количество мер, технически представляющее собой единое устройство, в рамках которого возможно по—разному комбинировать имеющиеся меры, называют магазином мер.
Объект измерения сравнивается с мерой посредством компараторов (технических приспособлений). Например, компаратором являются рычажные весы.
К однозначным мерам принадлежат и стандартные образцы (СО). Различают два вида стандартных образцов:
- стандартные образцы состава;
- стандартные образцы свойств.
Стандартный образец состава или материала – это образец с фиксированными значениями величин, количественно отражающих содержание в веществе или материале всех его составных частей. Например, сталь марки Ст45.
Стандартный образец свойств вещества или материала – это образец с фиксированными значениями величин, отражающих свойства вещества или материала. Например, образцы твердости, шероховатости, белой поверхности
Каждый стандартный образец в обязательном порядке должен пройти метрологическую аттестацию в органах метрологической службы, прежде чем начнет использоваться.
Стандартные образцы могут применяться на разных уровнях и в разных сферах. Выделяют:
- межгосударственные СО;
- государственные СО;
- отраслевые СО;
- СО организации (предприятия).
Измерительные преобразователи (ИП) – это средства измерения, выражающие измеряемую величину через другую величину или преобразующие ее в сигнал измерительной информации, который в дальнейшем можно обрабатывать, преобразовывать и хранить.
Преобразуемая величина называется входной, а результат преобразования — выходной величиной. Соотношение между ними задается функцией преобразования (статической характеристикой). Если в результате преобразования физическая природа величины не изменяется, а функция преобразования является линейной, то преобразователь называется масштабным, или усилителем (усилители напряжения, измерительные микроскопы, электронные усилители). Слово «усилитель» обычно употребляется с определением, которое приписывается ему в зависимости от рода преобразуемой величины (усилитель напряжения, гидравлический усилитель) или от вида единичных преобразований, происходящих в нем (ламповый усилитель, струйный усилитель).
В тех случаях, когда в преобразователе входная величина превращается в другую по физической природе величину, он получает название по видам этих величин (электромеханический, пневмоемкостный и так далее).
По назначению ИП делятся на преобразователи механических, тепловых, химических, магнитных, биологических и других физических величин.
В зависимости от того явления, которое используется для преобразования неэлектрической величины в электрическую преобразователи делятся на три группы:
-Электромеханические (контактные, реостатные, тензометрические, электростатические, электромагнитные);
-Тепловые и электрохимические (термоэлектрические, термосопротивления, электрохимические);
— Электронные и ионизационные (электронные, ионные, ионизационные).
Обязательными свойствами измерительного преобразователя являются нормированные метрологические свойства и вхождение в цепь измерения. Преобразователи поверяются.
Измерительный прибор – это средство измерения, посредством которого получается значение физической величины, принадлежащее фиксированному диапазону. В конструкции прибора обычно присутствует устройство, преобразующее измеряемую величину с ее индикациями в оптимально удобную для понимания форму. Для вывода измерительной информации в конструкции прибора используется, например, шкала со стрелкой или цифроуказатель, посредством которых и осуществляется регистрация значения измеряемой величины. В некоторых случаях измерительный прибор синхронизируют с компьютером, и тогда вывод измерительной информации производится на дисплей.
В соответствии с методом определения значения измеряемой величины выделяют:
- измерительные приборы прямого действия;
- измерительные приборы сравнения.
Измерительные приборы прямого действия – это приборы, посредством которых можно получить значение измеряемой величины непосредственно на отсчетном устройстве.
Измерительный прибор сравнения – это прибор, посредством которого значение измеряемой величины получается при помощи сравнения с известной величиной, соответствующей ее мере.
Измерительные приборы могут осуществлять индикацию измеряемой величины по-разному. Выделяют:
- показывающие (аналоговые и цифровые) измерительные приборы;
- регистрирующие измерительные приборы.
Разница между ними в том, что с помощью показывающего измерительного прибора можно только считывать значения измеряемой величины, а конструкция регистрирующего измерительного прибора позволяет еще и фиксировать результаты измерения, например посредством диаграммы или нанесения на какой-либо носитель информации.
Наибольшее распространение получили аналоговые приборы, отсчетные устройства которых состоят из двух элементов — шкалы и указателя, причем один из них связан с подвижной системой прибора, а другой — с корпусом. В цифровых приборах отсчет осуществляется с помощью механических, электронных или других цифровых отсчетных устройств.
Отсчетное устройство – конструктивно обособленная часть средства измерений, которая предназначена для отсчета показаний. Отсчетное устройство может быть представлено шкалой, указателем, дисплеем и др. Отсчетные устройства делятся на:
- шкальные отсчетные устройства;
- цифровые отсчетные устройства;
- регистрирующие отсчетные устройства.
Шкальные отсчетные устройства включают в себя шкалу и указатель.
Шкала – это система отметок и соответствующих им последовательных числовых значений измеряемой величины. Главные характеристики шкалы:
- количество делений на шкале;
- длина деления;
- цена деления;
- диапазон показаний;
- диапазон измерений;
- пределы измерений.
Деление шкалы – это расстояние от одной отметки шкалы до соседней отметки.
Длина деления – это расстояние от одной осевой до следующей по воображаемой линии, которая проходит через центры самых маленьких отметок данной шкалы.
Цена деления шкалы – это разность между значениями двух соседних значений на данной шкале.
Диапазон показаний шкалы – это область значений шкалы, нижней границей которой является начальное значение данной шкалы, а верхней – конечное значение данной шкалы.
Диапазон измерений – это область значений величин в пределах которой установлена нормированная предельно допустимая погрешность.
Пределы измерений – это минимальное и максимальное значение диапазона измерений.
Измерительная установка – это средство измерения, представляющее собой комплекс мер, измерительных преобразователей, измерительных приборов и прочее, выполняющих схожие функции, используемые для измерения фиксированного количества физических величин и собранные в одном месте. В случае, если измерительная установка используется для испытаний изделий, она является испытательным стендом.
Измерительная система – это средство измерения, представляющее собой объединение мер, измерительных преобразователей, измерительных приборов и прочее, выполняющих схожие функции, находящихся в разных частях определенного пространства и предназначенных для измерения определенного числа физических величин в данном пространстве.
По метрологическому предназначению средства измерения делятся на:
- рабочие средства измерения;
- эталоны.
Рабочие средства измерения (РСИ) – это средства измерения, используемые для осуществления технических измерений. Рабочие средства измерения могут использоваться в разных условиях. Выделяют:
- лабораторные средства измерения, которые применяются при проведении научных исследований;
- производственные средства измерения, которые применяются при осуществлении контроля над протеканием различных технологических процессов и качеством продукции;
- полевые средства измерения, которые применяются в процессе эксплуатации самолетов, автомобилей и других технических устройств.
К каждому отдельному виду рабочих средств измерения предъявляются определенные требования. Требования к лабораторным рабочим средствам измерения – это высокая степень точности и чувствительности, к производственным РСИ – высокая степень устойчивости к вибрациям, ударам, перепадам температуры, к полевым РСИ – устойчивость и исправная работа в различных температурных условиях, устойчивость к высокому уровню влажности.
Эталоны – это средства измерения с высокой степенью точности, применяющиеся в метрологических исследованиях для передачи сведений о размере единицы. Более точные средства измерения передают сведения о размере единицы и так далее, таким образом образуется своеобразная цепочка, в каждом следующем звене которой точность этих сведений чуть меньше, чем в предыдущем.
Сведения о размере единицы предаются во время проверки средств измерения. Проверка средств измерения осуществляется с целью утверждения их пригодности.
Технические устройства, предназначенные только лишь для обнаружения (индикации) физических свойств, называются индикаторами. С помощью индикаторов устанавливается только наличие или отсутствия измеряемой физической величины, пусть даже и в некотором диапазоне. В качестве примера индикатора можно привести указатель количества бензина в бензобаке автомобиля. Индикаторы не имеют нормированных метрологических характеристик и поэтому не подвергаются поверке.
Метрологические показатели средств измерений
При выборе средства измерения в зависимости от заданной точности необходимо учитывать их метрологические показатели. К ним относятся:
- Длина деления
- Цена деления
- Градуировочная характеристика — зависимость между значениями величин на выходе и входе средства измерений.
- Диапазон показаний
- Диапазон измерений
- Чувствительностьприбора — отношение изменения сигнала на выходе измерительного прибора к изменению измеряемой величины (сигнала) на входе. Так, если изменение измеряемой величины составило Δd= 0,01 мм, что вызвало перемещение стрелки показывающего устройства на Δl= 10 мм, то абсолютная чувствительность прибора составляет S = Δl/ Δd= 10/0,01 = 1000. Для шкальных измерительных приборов абсолютная чувствительность численно равна передаточному отношению.
- Вариация(нестабильность) показаний прибора — алгебраическая разность между наибольшим и наименьшим результатами измерений при многократном измерении одной и той же величины в неизменных условиях.
- Стабильность средства измерений — свойство, выражающее неизменность во времени его метрологических характеристик (показаний).
Метрологические характеристики средств измерений
Все средства измерений независимо от их исполнения имеют ряд общих свойств, необходимых для выполнения ими функционального назначения. Технические характеристики, описывающие эти свойства и оказывающие влияние на результаты и погрешности измерений, называются метрологическими характеристиками средств измерений.
В зависимости от специфики и назначения средств измерений нормируются различные наборы или комплексы метрологических характеристик. Однако эти комплексы должны быть достаточны для учета свойств средств измерений при оценке погрешностей измерений.
Набор метрологических характеристик, входящие в установленный комплекс, выбирают такими образом, чтобы обеспечить возможность их контроля при приемлемых затратах. В эксплуатационной документации на средства измерений указывают рекомендуемые методы расчета инструментальной составляющей погрешности измерений при использовании средств измерения данного типа в реальных условиях применения.
По ГОСТ 8.009 «ГСИ. Нормируемые метрологические характеристики средств измерений» предусмотрена следующая номенклатура метрологических характеристик:
1. Характеристики, предназначенные для определения результатов измерений (без введения поправок):
2. Характеристики погрешностей средств
3. Характеристики чувствительности средств измерений
4. Динамические
Нормы на отдельные метрологические характеристики приводятся в эксплуатационной документации (паспорте, техническом описании, инструкции по эксплуатации и т. д.) в виде номинальных значений, коэффициентов функций, заданных формулами, таблицами или графиками пределов допускаемых отклонений от номинальных значений функций.
В ГОСТ 8.009 приведены способы нормирования рассмотренных выше метрологических характеристик.
Классы точности средств измерений
Учет всех нормируемых метрологических характеристик средств измерений является сложной и трудоемкой процедурой. На практике такая точность не нужна. Поэтому для средств измерений, используемых в повседневной практике, принято деление на классы точности, которые дают их обобщенную метрологическую характеристику.
Класс точности – это обобщенная характеристика средств измерений, определяемая пределами допускаемых основных и дополнительных погрешностей, а также рядом других свойств, влияющих на точность осуществляемых с их помощью измерений. Классы точности регламентируются стандартами на отдельные виды средств измерения с использованием метрологических характеристик и способов их нормирования, изложенных в предыдущих главах. Требования к метрологическим характеристикам устанавливаются в стандартах на средства измерений конкретного типа.
Стандарт не распространяется на средства измерений, для которых предусматриваются раздельные нормы на систематическую и случайные составляющие, а также на средства измерений, для которых нормированы номинальные функции влияния, а измерения проводятся без введения поправок на влияющие величины. Классы точности не устанавливаются и на средства измерений, для которых существенное значение имеет динамическая погрешность. Классы точности присваиваются средствам измерений с учетом результатов государственных приемочных испытаний.
Для остальных средств измерений обозначение классов точности вводится в зависимости от способов задания пределов допускаемой основной погрешности.
Погрешность средства измерений— это разность между показанием прибора и истинным (действительным) значением измеряемой величины.
Погрешность может быть абсолютной, относительной и приведенной.
Абсолютной называют погрешность измерения, выраженную в тех же единицах, что и измеряемая величина. Например, 0,4 В, 2,5 мкм и т. д. Абсолютная погрешность
где А ~ результат измерения;
Хист — истинное значение измеряемой величины; ХД — действительное значение измеряемой величины.
Однако, абсолютная погрешность малоинформативна, т.к. судить о точности измерения можно лишь сопоставив ее с самим результатом измерения.
Относительная погрешность измерения представляет собой отношение абсолютной погрешности измерения к истинному (действительному) значению измеряемой величины и выражается в процентах или долях измеряемой величины:
Сравнивая относительные погрешности измерений можно уже судить о точности этих измерений. Однако, около нулевой отметки шкалы относительная погрешность также неудобна.
Приведенной погрешностью называется отношение абсолютной погрешности измерения к некоторому нормирующему значению шкалы. Нормирующее значение шкалы выбирается в зависимости от положения нулевой отметки шкалы и от некоторых особенностей прибора.
Нормирующее значение определяется следующим образом:
- для средств измерений, для которых утверждено номинальное значение, это номинальное значение принимается за нормирующее значение;
- для средств измерений, у которых нулевое значение располагается на краю шкалы измерения или вне шкалы, нормирующее значение принимается равным конечному значению из диапазона измерений. Исключением являются средства измерений с существенно неравномерной шкалой измерения;
- для средств измерений, у которых нулевая отметка располагается внутри диапазона измерений, нормирующее значение принимается равным сумме конечных численных значений диапазона измерений;
- для средств измерения (измерительных приборов), у которых шкала неравномерна, нормирующее значение принимается равным целой длине шкалы измерения или длине той ее части, которая соответствует диапазону измерения. Абсолютная погрешность тогда выражается в единицах длины.
Обозначения классов точности наносятся на циферблаты, щитки и корпуса средств измерений, приводятся в нормативно-технических документах. Классы точности могут обозначаться буквами (например, М, С и т. д.) или римскими цифрами (I, II, III и т. д.) в случае если значение погрешности Δ и измеряемой величины Х выражены одновременно либо в единицах измерения или в делениях шкалы. Чем меньше пределы допускаемой погрешности, тем ближе к началу алфавита должна быть буква и тем меньше цифра.
Обозначение классов точности по ГОСТ 8.401-80 может сопровождаться дополнительными условными знаками:
□ 0,5, 1,6, 2,5 и т. д. — для приборов, приведенная погрешность γ = Δ/ХN которых составляет 0,5, 1,6, 2,5% от нормирующего значения ХN (Δ — пределы допустимой абсолютной погрешности).
□ — то же, что и в предыдущем случае, но при ХN равным длине шкалы или ее части;
— дЛЯ приборов, у которых относительная погрешность δ = = Δ /х составляет 0,1, 0,4, 1,0% непосредственно от полученного значения измеряемой величины х;
□ 0,02/0,01 — для приборов, у которых измеряемая величина не может отличаться от значения х, показанного указателем, больше, чем на [С + d ( IХк/хI — 1)]%, где С и d — числитель и знаменатель соответственно в обозначении класса точности; Хк — больший (по модулю) из пределов измерений прибора. Примеры обозначения классов точности приведены на рисунке
Лицевые панели приборов: а) вольтметра класса точности 0,5; б) амперметра класса точности 1,5; в) амперметра класса точности 0,02/0,01; г) мегомметра класса точности (2,5) с неравномерной шкалой
Исходя из вышеприведенных формул, зная класс точности, можно вычислить погрешность измерительного прибора.
Выбор средств измерений по точности по известным условиям их применения и требуемой точности измерений (эта задача является обратной по отношению к задаче определения погрешности измерений).
Любой измеряемый параметр может быть измерен измерительным прибором с гарантией точности измерений, если погрешность прибора (она не может быть больше, чем, цена деления прибора, а при отсутствии информации приравнивается к ней) в 3 раза (в обоснованных случаях – в 2 раза) меньше допуска измеряемого параметра. Величина допуска вычисляется как разность максимального и минимального значений параметра.
Требуется контролировать температуру 20±3 0 С. Предложены термометры :
- диапазон 0-50 градусов Цельсия, класс точности 1,0, ц.деления 0,5 и
- диапазон 0-300 градусов Цельсия, класс точности 1,0, ц.деления 1
Вычислив по формуле абсолютную допускаемую погрешность, приходим к выводу, что у термометра1 она составляет ±0,5 градусов Цельсия, а у термометра 2 — ±3 градусов Цельсия.
Допуск равен 6 градусам Цельсия, следовательно, погрешность измерения не должна превышать 2-х градусов.
Этому условию соответствует термометр 1.