1. Индивидуальные и коллективные средства защиты от поражения электрическим током, их виды, назначение, сроки проверки, правила хранения и эксплуатации.
Ответ: К средствам коллективной защиты работающих от механического травмирования (физического опасного фактора) относятся ограждения (кожухи, козырьки, дверцы, экраны, щиты, барьеры и т.д.), предохранительные — блокировочные устройства (механические, электрические, электронные, пневматические, гидравлические и т.д.), тормозные устройства (рабочие, стояночные, экстренного торможения), сигнальные устройства (звуковые, световые), которые могут встраиваться в оборудование или быть составными элементами.
Для обеспечения безопасной эксплуатации производственного оборудования его оснащают надежно работающими тормозными устройствами, гарантирующими в нужный момент остановку машины, сигнализацией, оградительными и блокировочными устройствами, устройствами аварийного отключения, устройствами дистанционного управления, устройствами электробезопасности.
Для обеспечения защиты от поражения электрическим током при прикосновении к металлическим нетоковедущим частям, которые могут оказаться под напряжением в результате повреждения изоляции, применяют следующие способы:
1. защитное заземление;
3. выравнивание потенциала;
4. систему защитных проводов;
5. защитное отключение;
6. изоляцию нетоковедущих частей;
7. электрическое разделение сети;
8. малое напряжение;
9. контроль изоляции;
10. компенсацию токов замыкания на землю;
11. средства индивидуальной защиты.
12. Индивидуальные средства защиты
13. специальные приборы, предметы, обувь, одежда и лекарственные препараты, предназначенные для личного использования с целью предупреждения или уменьшения действия на организм человека поражающих факторов современного оружия, а также вредных факторов производства и окружающей среды.
14. Индивидуальные средства защиты создаются с учетом видов поражающих и вредных факторов (механических, термических, световых, химических, биологических, радиационных и др.), характера, механизма и возможного их сочетанного поражающего (вредного) действия. И. с. з. делятся на средства защиты органов дыхания, кожи, органов зрения и слуха, Особую группу составляют медицинские средства защиты.
Комитеты (комиссии) по охране труда: состав, назначение. Особенности организации охраны труда в предприятиях торговли.
Ответ: КОМИТЕТ (КОМИССИЯ) ПО ОХРАНЕ ТРУДА — рабочий орган управления охраной труда в организации, обеспечивающий согласованные действия работодателя и работников, направленные на создание здоровых и безопасных условий труда в организации.
Комитеты (комиссии) по ОТ (далее — К.) стали создаваться в организациях с 1993 г. в связи с принятием Основ законодательства Российской Федерации об охране труда. Такие К. существуют во многих европейских странах, наибольший опыт — в Германии. В соответствии со ст. 218 ТК РФ в организациях К. осуществляют свою деятельность на основе Типового положения о комитете (комиссии) по охране труда, которое утверждается федеральным органом исполнительной власти, осуществляющим функции по выработке государственной политики и нормативно-правовому регулированию в сфере труда. В их состав на паритетной основе входят представители работодателей, профессиональных союзов или иного уполномоченного работниками представительного органа.
Правила по охране труда на предприятиях розничной торговли разработаны на основе действующего законодательства об охране труда с соблюдением требований стандартов системы стандартов безопасности труда (ССБТ), строительных, санитарных норм и правил, а также правил, утвержденных федеральными органами надзора России.
Правила включают требования безопасности при организации и производстве работ, эксплуатации оборудования на предприятиях розничной торговли, а также требования к профессиональному отбору и проверке знаний работников, применению средств защиты и ответственность работников.
Правила включают требования безопасности при организации и производстве работ, эксплуатации оборудования на предприятиях розничной торговли, а также требования к профессиональному отбору и проверке знаний работников, применению средств защиты и ответственность работников при нарушении правил по охране труда.
При отсутствии в Правилах требований, соблюдение которых при производстве работ необходимо для обеспечения безопасных условий труда, руководители по согласованию с соответствующим выборным профсоюзным органом предприятия принимают меры, обеспечивающие безопасные условия труда.
Билет №13 Приборы для контроля и средства защиты (индивидуальный и коллективные) от вредных производственных факторов, их виды.
Ответ: Коллективные средства защиты — это инженерные сооружения, специально предназначенные для защиты от ядерного, химического и биологического оружия, а также от возможных вторичных поражающих факторов при ядерных взрывах и применении обычных средств поражения.3.1. Основные опасные и вредные производственные факторы
В соответствии с ГОСТ 12.0.003-74 опасные и вредные производственные факторы по природе действия делятся на 4 группы:
Группа опасных и вредных физических производственных факторов разделяется на следующие подгруппы:
— машины и механизмы, которые двигаются;
— незащищенные движущиеся элементы производственного оборудования;
— изделия, заготовки, материалы, которые перемещаются;
— повышенная запыленность и загазованность воздуха рабочей зоны;
— повышенная или пониженная температура поверхности оборудования, материала;
— повышенная или пониженная температура воздуха рабочей зоны;
— повышенный уровень шума на рабочем месте;
— повышенный уровень вибрации;
— повышенное или пониженное барометрическое давление в рабочей зоне и его резкое колебание;
— повышенная или пониженная влажность воздуха;
— повышенная скорость движения воздуха;
— опасный уровень напряжения в электрической сети, замыкание которой может произойти через тело человека;
— повышенный уровень статического электричества;
— отсутствие или недостаточность естественного освещения;
— недостаточная освещенность рабочей зоны;
— повышенная яркость света;
— прямой и отраженный свет;
— повышенная пульсация светового потока.
Вредным производственным фактором (ВПФ) называется та кой производственный фактор, воздействие которого на работающего в определенных условиях приводит к заболеванию или
снижению трудоспособности. Заболевания, возникающие под действием вредных производственных факторов, называются профессиональными.
К опасным производственным факторам следует отнести, например:
• электрический ток определенной силы;
• возможность падения с высоты самого работающего либо различных деталей и предметов;
• оборудование, работающее под давлением выше атмосферного, и т.д. К вредным производственным факторам относятся:
• неблагоприятные метеорологические условия;
• запыленность и загазованность воздушной среды;
• воздействие шума, инфра- и ультразвука, вибрации;
• наличие электромагнитных полей, лазерного и ионизирующих излучений и др.
Все опасные и вредные производственные факторы в соответствии с ГОСТ 12.0.003-74 подразделяются на физические, химические, биологические и психофизиологические.
Билет №14Основные причины возникновения пожаров в предприятиях торговли. Способы тушения пожаров. Средства тушения пожара.
Ответ: К самым частым причинам возникновения бытовых пожаров относят:
неосторожное отношение с огнем – является причиной каждого третьего пожара. Непотушенные спички и сигареты, неосторожное использование керосиновых ламп, небрежность при хранении легковоспламеняющихся материалов, курение в постели в состоянии алкогольного опьянения и др. – вот неизменные спутники пожаров; печное отопление – основные причины этого случая возникновения пожаров заключаются в использовании металлических печей, не отвечающих правилам пожарной безопасности, оставлении печи без присмотра, применение для розжига печи легковоспламеняющихся жидкостей, использование печи без металлического листа, находящегося перед топкой и препятствующего возникновению пожара на полу и др.; нарушение правил пользования электрическими приборами – как правило, такие пожары происходят либо из-за нарушения правил при пользовании электробытовыми приборами, либо из-за неисправности этих приборов и сетей; неисправность электропроводки – в основном это происходит из-за: перегрузкок сетей, которая может быть вызвана, например, включением нескольких бытовых приборов в одну розетку; короткого замыкания, возникающего вследствие соединения двух проводников без изоляции; неправильным соединением проводов, их слабого крепления или сильного окисления; неисправности бытовых газовых приборов – основная причина заключается в утечки газа вследствие нарушения герметичности трубопроводов, соединительных узлов или самой плиты; шалости детей – дети, предоставленные самим себе, как правило, пытаются подрожать взрослым. Они могут попробовать покурить или, например, разжечь костер прямо в квартире.
Самым распространенным средством при тушении пожара является вода. Попадая на горящий материал, она охлаждает его; образуется пар, который препятствует притоку кислорода к очагу горения. Воду не применяют при тушении горючих жидкостей, удельный вес которых меньше, чем у нее, так как они, всплывая и растекаясь по поверхности, увеличивают площадь пожара. Нельзя использовать воду для тушения веществ, вступающих с ней в бурную химическую реакцию(металлический натрий, калий, магний, карбит кальция и т.д.), а также необесточенных электропроводов и приборов.
Песок, покрывая горящую поверхность, прекращает доступ к ней кислорода, препятствует выделению горючих газов и понижает температуру горящего предмета. Сырой песок обладает токопроводящими свойствами и поэтому его нельзя использовать при тушении предметов, находящихся под электрическим напряжением. Песок не должен содержать посторонних горючих примесей.
К подручным средствам пожаротушения также относятся асбестовые и грубошерстные покрывала, которыми накрывают небольшие очаги пожара, чтобы прекратить к ним доступ воздуха.
Ликвидируя пожар, спасатели используют немеханизированные и механизированные инструменты.
Для тушения пожара используют различные огнегасительные средства. Ими могут быть вещества или материалы, которые способствуют прекращению горения.
Огнегасительные средства должны обладать высокой эффективностью тушения, т. е. при малом расходе их на единицу площади или объема быстро прекращать горение, быть без опасными при пользовании и хранении, безвредными.
Наибольшая эффективность тушения пожаров ударными действиями водных струн достигается из стволов литер «А» на расстоянии от спрыска их до горящего вещества до 5 м и из лафетных стволов на расстоянии до 10 м.
Тушить распыленной водяной струей жидкости, не смешвающиеся с водой, температура воспламенения которых находится в пределах 50—120°С (дизельное топливо, керосин), можно в том случае, если величина капель водяной струи не более 0,4 мм.
Для тушения таких же жидкостей, но имеющих темпера туру воспламенения ниже 50° С (бензин, нефть), целесообразно применять распыленную водяную струю с размером капель менее 0,3 мм.
Несчастные случаи на производстве: понятие, классификация. Порядок расследования, документального оформления и учёта несчастных случаев в организациях. Порядок возмещения работодателем вреда, причинённого здоровью работника в связи с несчастным случаем.
Ответ: Несчастный случай на работе (на производстве) – это событие, в итоге которого застрахованное лицо получило увечье или другое повреждение своего здоровья при выполнении им рабочих обязанностей по трудовому договору и в других случаях, установленных законом
на территории страхователя (организации) или за ее пределами, во время следования к рабочему месту или возвращения с работы на транспорте, который предоставляет страхователь, приведшее к необходимости перевода застрахованного сотрудника на другую работу, к стойкой или временной утрате им профессиональной трудоспособности или смерти.
НЕСЧАСТНЫЙ СЛУЧАЙ НА ПРОИЗВОДСТВЕ (или травма связанная с производством)— случай травматического повреждения здоровья пострадавшего, происшедший по причине, связанной с его трудовой деятельностью, или во время работы(смотрим фото производственных травм). В зависимости от характера и обстоятельств происшествия, тяжести полученных пострадавшими телесных повреждений различают несчастный случай на производстве (смотрим примеры видео травмы на производстве )виды: — легкие — несчастные случаи, в результате которых пострадавшими были получены повреждения здоровья, отнесенные по квалифицирующим признакам, установленным Минздравсоцразвития России, к категории легких и средней тяжести; — тяжелые — несчастные случаи, в результате которых пострадавшими были получены повреждения здоровья, отнесенные по квалифицирующим признакам, установленным Минздравсоцразвития России, к категории тяжелых; — со смертельным исходом — несчастные случаи, в результате которых пострадавшие получили повреждения здоровья, приведшие к их смерти; — групповые — несчастные случаи с числом пострадавших 2 человека и более; — групповые с тяжелыми последствиями — несчастные случаи, при которых 2 человека и более получили повреждения здоровья, относящиеся к категории Положение об особенностях расследования несчастных случаев на производстве в отдельных отраслях и организациях. — М.: Изд-во НЦ ЭНАС, 2003.
Положение об особенностях расследования несчастных случаев на производстве в отдельных отраслях и организациях (далее — Положение) разработано в соответствии со статьей 229 Трудового кодекса (далее — Кодекс) Российской Федерации и постановлением Правительства РФ от 31 августа 2002 г. № 653 «О формах документов, необходимых для расследования и учета несчастных случаев на производстве, и особенностях расследования несчастных случаев на производстве».
Настоящее Положение с учетом статей 227 — 231 Кодекса устанавливает обязательные требования по организации и проведению расследования, оформления и учета несчастных случаев на производстве, происходящих в организациях и у работодателей.
Положение утверждено постановлением Министерства труда и социального развития Российской Федерации от 24 октября 2002 г. № 73, зарегистрировано в Минюсте России 5 декабря 2002 г. (регистрационный № 3999) и введено в действие с 1 января 2003 г.
С введением настоящего Положения утрачивают силу ранее принятые нормативные правовые документы о расследовании и учете несчастных случаев на производстве (Постановление Министерства труда и социального развития Российской Федерации от 31 декабря 2002 г. № 86, Постановление Правительства Российской Федерации от 8 января 2003 г. № 5).
Настоящее Положение издается по поручению Департамента государственного надзора и контроля за соблюдением законодательства о труде и охране труда Минтруда России (письмо от 17 января 2003 г. № 121-18/10-04) и тяжелых или со смертельным исходом.
Прежде всего судьи напомнили, что возмещение вреда, причиненного жизни или здоровью застрахованного лица при исполнении им обязанностей по трудовому договору, предоставляется в порядке обязательного социального страхования от несчастных случаев на производстве и профессиональных заболеваний.
1.Индивидуальные и коллективные средства защиты от поражения электрическим током.
Коллективные средства защиты делятся на: оградительные, предохранительные, тормозные устройства, оградительные устройства, устройства автоматического контроля и сигнализации, дистанционного управления, знаки безопасности.
Блокировочные устройства по принципу действия подразделяют на механические, электронные, электрические, электромагнитные, пневматические, гидравлические, оптические, магнитные и комбинированные. Блокировочные устройства препятствуют проникновению человека в опасную зону либо во время пребывания его в этой зоне устраняют опасный фактор.
Электрическую блокировку применяют на электроустановках с напряжением от 500 В и выше, а также на различных видах технологического оборудования с электроприводом. Она обеспечивает включение оборудования только при наличии ограждения. Электромагнитную (радиочастотную) блокировку применяют для предотвращения попадания человека в опасную зону. Оптическая блокировка находит применение в кузнечно-прессовых и механических цехах машиностроительных заводов. Электронную (радиационную) блокировку применяют для защиты опасных зон на прессах, гильотинных ножницах и других видах технологического оборудования, применяемого в машиностроении.
Тормозные устройства подразделяют: по конструктивному исполнению – на колодочные, дисковые, конические и клиновые; по способу срабатывании – на ручные, автоматические и полуавтоматические; по принципу действия – на механические, электромагнитные, пневматические, гидравлические и комбинированные; по назначению – на рабочие, резервные, стояночные и экстренного торможения.
Возможно применение подвижного (съемного) ограждения. Оно представляет собой устройство, сблокированное с рабочими органами механизма или машины, вследствие чего закрывает доступ в рабочую зону при наступлении опасного момента. Особенно широкое распространение получили такие ограничительные устройства в станкостроении (например, в станках с ЧПУ ОФЗ—36).
Переносные ограждения являются временными. Их используют при ремонтных и наладочных работах для защиты от случайных прикосновений к токоведущим частям, а также от механических травм и ожогов. Кроме того, их применяют на постоянных рабочих местах сварщиков для защиты окружающих от воздействия электрической дуги и ультрафиолетовых излучений (сварочные посты). Выполняются они чаще всего в виде щитов высотой 1,7 м. Чтобы выдержать нагрузки от отлетающих при обработке частиц и случайные воздействия обслуживающего персонала, ограждения должны быть достаточно прочными и хорошо крепиться к фундаменту или частям машины.
Предохранительные устройства используют для автоматического отключения машин и оборудования при отклонении от нормального режима работы или при попадании человека в опасную зону. Эти устройства могут быть блокирующими и ограничительными. Блокирующие устройства по принципу действия бывают: электромеханические, фотоэлектрические, электромагнитные, радиационные, механические. Ограничительные устройства являются составными частями машин и механизмов, которые разрушаются или выходят из строя при перегрузках.
Для обеспечения безопасной и надежной работы оборудования информационные, предупреждающие, аварийные устройства автоматического контроля и сигнализации очень важны. Устройства контроля – это приборы для измерения давлений, температуры, статических и динамических нагрузок, характеризующих работу машин и оборудования. При объединении устройств контроля с системами сигнализации значительно повышается их эффективность. Системы сигнализации бывают: звуковыми, световыми, цветовыми, знаковыми, комбинированными.
Для защиты от поражения электрическим током применяются различные технические меры. Это – малые напряжения; электрическое разделение сети; контроль и профилактика повреждения изоляции; защита от случайного прикосновения к токоведущим частям; защитное заземление; защитное отключение; индивидуальные средства защиты.
Длительная работа на персональном компьютере может отрицательно воздействовать на человека. Монитор персонального компьютера (ПК) является источником электростатического поля; слабых электромагнитных излучений в низкочастотном и высокочастотном диапазонах; рентгеновского излучения; излучения видимого диапазона. При длительной работе на ПК появляются боли в позвоночнике, плечевых суставах, шее, болевые ощущения в локтевых суставах, запястьях, кистях и пальцах рук. Наиболее сильной нагрузке подвергается зрительный аппарат человека.
При эксплуатации ПК большое значение придается правильной организации работы. Помещение, в котором находятся ПК, должно быть просторным, хорошо проветриваемым, правильно, освещенным. Освещение должно быть смешанным: естественным и искусственным. Следует избегать большого контраста между яркостью экрана и окружающего пространства. Запрещается работа на компьютере в темном и полутемном помещении.
Индивидуальные средства защиты (включая спецодежду и спецобувь)
При выполнении ряда производственных операций (в литейном производстве, в гальванических цехах, при погрузке и разгрузке, механической обработке и т. п.) необходимо носить спецодежду (костюмы, комбинезоны и др.)? сшитую из специальных материалов для обеспечения безопасности от воздействий различных веществ и материалов, с которыми приходится работать, теплового и других излучений. Требования, предъявляемые к спецодежде, заключаются в обеспечении наибольшего комфорта для человека, а также желаемой безопасности.
При некоторых видах работ для предохранения спецодежды могут использоваться фартуки, например, в работе с охлаждающими и смазочными материалами, при тепловых воздействиях, и т. д. В других условиях возможно применение специальных нарукавников,
Во избежание травм стоп и пальцев ног необходимо носить защитную обувь (сапоги, ботинки). Ее применяют при следующих работах: с тяжелыми предметами; в строительстве; в условиях, где существует риск падения предметов; в литейном, кузнецом, сталелитейном производствах и т. п.; в помещениях, где полы залиты водой, маслом и др.
Некоторые типы спецобуви снабжены усиленной подошвой, предохраняющей стопу от острых предметов (таких, как торчащий гвоздь). Обувь со специальными подметками предназначена для тех условий труда, при которых существует риск травмы при падении на скользком льду, залитым водой и маслом. Находит применение специальная виброзащитная обувь.
Для защиты рук при работах в гальванических цехах, литейном производстве, при механической обработке металлов, древесины, при погрузочно-разгрузочных работах и т.п. необходимо использовать специальные рукавицы или перчатки, Защита рук от вибраций достигается применением рукавиц из упругодемпфирующего материала.
Средства защиты головы предназначены для предохранения головы от падающих и острых предметов, а также для смягчения ударов. Выбор шлемов и касок зависит от вида выполняемых работ. Они должны использоваться в следующих условиях:
— существует риск получить травму от материалов, инструментов или других острых предметов, которые падают вниз, прокидываются, соскальзывают, выбрасываются или сбрасываются вниз;
— имеется опасность столкновения с острыми выпирающими или свивающими предметами, остроконечными предметами, предметами неправильной формы, а также с подвешенными или качающимися тяжестями;
— существует риск соприкосновения головы с электрическим проводом.
Для предохранения от вредных механических, химических и лучевых воздействий необходимы средства защиты глаз и лица. Эти средства применяют при выполнении следующих работ: шлифовании, пескоструйной обработке, распылении, опрыскивании, сварке, а также при использовании едких жидкостей, вредном тепловом воздействии и др. Эти средства выполняют в виде очков или щитков. В некоторых ситуациях средства защиты глаз применяют вместе со средствами защиты органов дыхания, например, специальные головные уборы.Средства защиты органов слуха используют в шумных производствах, при обслуживании энергоустановок и т.п. Существуют различные типы средств защиты органов слуха: беруши и наушники. Правильное и постоянное применение средств защиты слуха снижает шумовую нагрузку для берушей на 10—20, для наушников на 20—30 дБА.
Средства защиты органов дыхания предназначены для того, чтобы предохранить от вдыхания и попадания в организм человека вредных веществ (пыли, пара, газа) при проведении различных технологических процессов. При подборе средств индивидуальной защиты органов дыхания (СИЗОД) необходимо знать следующее: с какими веществами приходится работать; какова концентрация загрязняющих веществ; сколько времени приходится работать; в каком состоянии находятся эти вещества: в виде газа, паров или аэрозоли; существует ли опасность кислородного голодания; каковы физические нагрузки в процессе работы.
Существует два типа средств защиты органов дыхания: фильтрующие и изолирующие. Фильтрующие подают в зону дыхания очищенный от примесей воздух рабочей зоны, изолирующие – воздух из специальных емкостей или из чистого пространства, расположенного вне рабочей зоны.
При работе с радиоактивными веществами к средствам повседневного использования относят халаты, комбинезоны, костюмы, спецобувь и некоторые типы противопылевых респираторов. Спецодежду для повседневного использования изготовляют из хлопчатобумажной ткани (верхнюю одежду и белье). Если возможно воздействие на работающих агрессивных химических веществ, верхнюю спецодежду изготовляют из синтетических материалов – лавсана.
К средствам кратковременного использования относят изолирующие шланговые и автономные костюмы, пневмокостюмы, перчатки и пленочную одежду: фартуки, нарукавники, полукомбинезоны. Пластиковую одежду, изолирующие костюмы, спецобувь изготовляют из прочного легко дезактивируемого поливинилхлоридного пластика морозостойкостью до —25 °С или пластиката, армированного капроновой сеткой рецептуры 80 AM.
Безопасное проведение работ обеспечивается также путем применения индивидуальных защитных устройств. Так, при работе на высоте, в колодцах и других ограниченных объемах необходимо использовать спасательные пояса, страхующие канаты, а также СИЗ.
Защита человека от поражения электрическим током
Безопасность при работе с электроустановками обеспечивается применением различных технических и организационных мер. Они регламентированы действующими правилами устройства электроустановок (ПУЭ). Технические средства защиты от поражения электрическим током делятся на коллективные и индивидуальные, на средства, предупреждающие прикосновение людей к элементам сети, находящимся под напряжением, и средства, которые обеспечивают безопасность, если прикосновение все-таки произошло.
Основные способы и средства электрозащиты:
— изоляция токопроводящих частей и ее непрерывный контроль;
— установка оградительных устройств;
— предупредительная сигнализация и блокировка;
— использование знаков безопасности и предупреждающих плакатов;
— использование малых напряжений;
— электрическое разделение сетей;
— средства индивидуальной электрозащиты.
Изоляция токопроводящих частей – одна из основных мер электробезопасности. Согласно ПУЭ сопротивление изоляции токопроводящих частей электрических установок относительно земли должно быть не менее 0,5 – 10 МОм. Различают рабочую, двойную и усиленную рабочую изоляцию.
Рабочей называется изоляция, обеспечивающая нормальную работу электрической установки и защиту персонала от поражения электрическим током. Двойная изоляция, состоящая из рабочей и дополнительной, используется в тех случаях, когда требуется обеспечить повышенную электробезопасность оборудования (например, ручного электроинструмента, бытовых электрических приборов и т.д.).
Сопротивление двойной изоляции должно быть не менее 5 МОм, что в 10 раз превышает сопротивление обычной рабочей. В ряде случаев рабочую изоляцию выполняют настолько надежно, что ее электросопротивление составляет не менее 5 МОм и потому она обеспечивает такую же защиту от поражения током, как и двойная. Такую изоляцию называют усиленной рабочей изоляцией.
При замыканиях тока на конструктивные части электрооборудования (замыкание на корпус) на них появляются напряжения, достаточные для поражения людей или возникновения пожара. Осуществить защиту от поражения электрическим током и возгорания в этом случае можно тремя путями: защитным заземлением, занулением и защитным отключением.
Защитное заземление – это преднамеренное соединение с землей или ее эквивалентом металлических нетоковедущих частей электрооборудования, которые в обычном состоянии не находятся под напряжением, но могут оказаться под ним при случайном соединении их с токоведущими частями.
Рассмотрим схему действия защитного заземления на примере трехфазной сети с изолированной нейтралью (рис. 9.2).
Рисунок 9.2 — Схема работы защитного заземления:
Rиз – сопротивление изоляции каждой из фаз относительно земли
Если человек прикоснется к заземленной электроустановке, находящейся под напряжением, то он попадет под напряжение прикосновения, определяемое по формуле
где a1 – коэффициент напряжения прикосновения или просто коэффициент прикосновения (a 1 < 1 и зависит от вида заземлителя);
Iз – ток замыкания, А;
Rз – сопротивление защитного заземления, Ом.
Ток, проходящий через тело человека, попавшего под напряжение прикосновения (, А), составит
где Rс – сопротивление растеканию тока в земле, зависящее от удельного сопротивления земли и сопротивления подошвы обуви человека, Ом.
Если человек находится в условиях высокой влажности (Rc ® 0), предыдущую формулу можно упростить
Рассчитаем для случая, если I3 = 4 А, Rз = 4 Ом и aпр = 0,4 (контурный заземлитель):
Этот ток безопасен для человека, так как не превышает значения неотпускающего тока (10 мА).
Таким образом, принцип действия защитного заземления заключается в снижении до безопасных значений напряжений прикосновения (и напряжения шага), вызванных замыканием на корпус.
Защитному заземлению (занулению) подвергают металлические части электроустановок и оборудования, доступные для прикосновения человека и не имеющие других видов защиты, например, корпуса электрических машин, трансформаторов, светильников, каркасы распределительных щитов, металлические трубы и оболочки электропроводок, а также металлические корпуса переносных электроприемников. Обязательно заземляют электроустановки, работающие под напряжением 380 В и выше переменного тока и питающиеся от источника постоянного тока с напряжением 440 В и выше. Кроме того, в помещениях повышенной и особой опасности заземляют установки с напряжением от 42 до 380 В переменного тока и от 110 до 440 В постоянного тока.
Заземляющее устройство – это совокупность заземлителя – металлических проводников, соприкасающихся с землей, и заземляющих проводников, соединяющих заземляемые части электроустановки с заземлителем. В зависимости от взаимного расположения заземлителей и заземляемого оборудования различают выносные (рис.9.3) и контурные (рис.9.4) заземляющие устройства. Первые из них характеризуются тем, что заземлители вынесены за пределы площадки, на которой размещено заземляемое оборудование, или сосредоточены на некоторой части этой площадки.
Контурное заземляющее устройство, заземлители которого располагаются по контуру (периметру) вокруг заземляемого оборудования на небольшом расстоянии друг от друга (несколько метров), обеспечивает лучшую степень защиты, чем предыдущее.
Рисунок 9.3 — Схема выносного заземления:
1 – заземлители; 2 – заземляющие проводники; 3 – заземляемое оборудование; 4 – производственные здания
Рисунок 9.4 — Схема контурного заземления:
1 – заземлители; 2 – заземляющие проводники; 3 – заземляемое оборудование; 4 – производственное здание
Заземлители бывают искусственные, которые используются только для целей заземления, и естественные, в качестве которых используют находящиеся в земле трубопроводы (за исключением трубопроводов горючих жидкостей или газов), металлические конструкции, арматуру железобетонных конструкций, свинцовые оболочки кабелей и др. Искусственные заземлители изготавливают из стальных труб, уголков, прутков или полосовой ткани.
Требования к сопротивлению защитного заземления регламентируются ПУЭ. В любое время года это сопротивление не должно превышать:
— 4 Ом – в установках, работающих под напряжением до 1000 В; если мощность источника тока составляет 100 кВ×А и менее, то сопротивление заземляющего устройства может достигать 10 Ом;
— 0,5 Ом – в установках, работающих под напряжением выше 1000 В с эффективно заземленной нейтралью. Наибольшее сопротивление заземляющего устройства (R,Ом) не должно быть более 250/I3 (но не более 10 Ом) в установках напряжением выше 1000 В с изолированной нейтралью. При использовании заземляющего устройства одновременно для установок напряжением до 1000 В, R не должно быть более 125/I3 (но не более 4 или 10 Ом соответственно). В этих формулах I3 – ток замыкания на землю, А.
Защитное зануление предназначено для защиты в трехфазных четырехпроводных сетях с глухозаземленной нейтралью, работающих под напряжением до 1000 В, так как в этих сетях использование защитного заземления неэффективно. Обычно это сети 220/127, 380/220 и 660/380 В.
Рассмотрим действие защитного зануления подробнее. Пусть имеется трехфазная трехпроводная сеть, работающая под напряжением до 1000 В с заземленной нейтралью (рис. 9.5).
Рисунок 9.5 — Схема трехфазной трехпроводной сети до 1000 В с заземленной нейтралью
Если в такой схеме одна из фаз будет замкнута на корпус электропроводки (показана на схеме молниеобразной стрелкой), то величина тока (I3, А), протекающего в сети, определится из следующей зависимости
где UФ – фазное напряжение, В;
R0 – сопротивление заземления нейтрали, Ом;
R3 – сопротивление корпуса электроустановки, Ом.
При этом на корпусе электроустановки возникает напряжение относительно земли (Uк), определяемое следующей формулой
Рассчитаем величину тока короткого замыкания (I3, А) для значений U ф = 220В и R0 = R3= 4 Ом:
Ток короткого замыкания I3 может оказаться недостаточным для срабатывания защиты, и электроустановка может не отключиться. Корпус электроустановки находится под опасным напряжением. Если человек случайно прикоснется к корпусу электроустановки, находящейся под этим напряжением, то ток, протекающий через тело человека, составит
где aпр – коэффициент напряжения прикосновения.
Если aпр = 1 и Uк = 110 В, то Iчел = 110/1000 = 0,11 А = 110 мА. Этот ток превышает значение фибрилляционного, поэтому является смертельно опасным. Таким образом, защитное заземление в этом случае не обеспечивает надежной защиты человека, поэтому используют не заземление, а зануление.
Занулением называют способ защиты от поражения током автоматическим отключением поврежденного участка сети и одновременно снижением напряжения на корпусах оборудования на время, пока не сработает отключающий аппарат (плавкие предохранители, автоматы и др.). Зануление — это преднамеренное соединение с нулевым защитным проводником металлических нетокопроводяших частей, которые могут оказаться под напряжением (рис. 9.6).
Проводник (1), который соединяет зануляемые части электроустановки с глухозаземленной нейтральной точкой обмотки трансформатора, называют нулевым защитным. Назначение этого проводника заключается в создании для тока короткого замыкания электрической цепи с малым электросопротивлением (цепь обозначена на рисунке цифрами I – II – III – IV – V), чтобы данный ток был достаточен для быстрого отключения повреждения от сети. Это достигается срабатыванием элемента защиты сети от тока короткого замыкания (на рисунке этот элемент обозначен цифрой 2).
Цепь зануления I – II – III – IV – V имеет очень малое электрическое сопротивление (доли Ом). Ток короткого замыкания, возникающий при замыкании на корпус и проходящий по цепи зануления, достигает большого значения (нескольких сотен ампер), что обеспечивает быстрое и надежное срабатывание элементов защиты.
Рисунок 9.6 – Схема работы зануления:
1 – нулевой защитный проводник; 2 – срабатываемый элемент защиты; 3 – повторное заземление нулевого провода
Для устранения опасности обрыва нулевого провода устраивают его повторное многократное рабочее заземление через каждые 250 м.
Основное требование безопасности к занулению: оно должно обеспечивать надежное и быстрое срабатывание защиты. Для этого необходимо выполнение следующего условия Iкз ³ k Iном, где Iном – номинальное значение тока, при котором происходит срабатывание элемента защиты; k – коэффициент, характеризующий кратность тока короткого замыкания относительно номинального значения тока, при котором срабатывает элемент защиты.
Время срабатывания элементов защиты зависит от силы тока. Так, для плавких предохранителей и тепловых автоматов при k = 10 время срабатывания предохранителя составляет 0,1 с, а при k = 3 – 0,2 с. Электромагнитный автоматический выключатель обесточивает сеть за 0,01 с. Согласно требованиям ПУЭ в помещениях с нормальными условиями k должен находиться в пределах 1,2 – 3, а во взрывоопасных помещениях k = 1,4 – 6.
Еще одна система защиты – защитное отключение – это защита от поражения электрическим током в электроустановках, работающих под напряжением до 1000 В, автоматическим отключением всех фаз аварийного участка сети за время, допустимое по условиям безопасности для человека.
Основная характеристика этой системы – быстродействие, оно не должно превышать 0,2 с. Принцип защиты основан на ограничении времени протекания опасного тока через тело человека. Существуют различные схемы защитного отключения, одна из них, основанная на использовании реле напряжения, представлена на рисунке 9.7.
Защитное отключение рекомендуется применять:
— в передвижных установках напряжением до 1000 В;
— для отключения электрооборудования, удаленного от источника питания, как дополнение к занулению;
— в электрифицированном инструменте как дополнение к защитному заземлению или занулению;
— в скальных и мерзлых фунтах при невозможности выполнять необходимое заземление.
Рисунок 9.7 – Схема защитного отключения:
1 – корпус электроустановки; 2 – автоматический выключатель; 3 – отключающая катушка; 4 – сердечник катушки; 5 – реле максимального напряжения; R3 – сопротивление защитного заземления; I3 – ток замыкания; Iр – ток, протекающий через реле; Rв – сопротивление вспомогательного заземления
К организационным мероприятиям, обеспечивающим безопасную эксплуатацию электроустановок относятся оформление соответствующих работ нарядом или распоряжением, допуск к работе, надзор за проведением работ, строгое соблюдение режима труда и отдыха, переходов на другие работы и окончания работ.
Нарядом для проведения работы в электроустановках называют составленное на специальном бланке задание на ее безопасное производство, определяющее содержание, место, время начала и окончания работы, необходимые меры безопасности, состав бригад и лиц, ответственных за безопасность выполнения работ. Распоряжением называют то же задание на безопасное производство работы, но с указанием содержания работы, места, времени и лиц, которым поручено ее выполнение.
Все работы на токопроводящих частях электроустановок под напряжением и со снятием напряжения выполняют по наряду, кроме кратковременных работ (продолжительностью не более 1 ч), требующих участия не более трех человек. Эти работы выполняют по распоряжению.
К организационным мероприятиям также относятся обучение персонала правильным приемам работы с присвоением работникам, обслуживающим электроустановки, соответствующих квалификационных групп.
Важным вопросом электробезопасности является защита от удара молний, или молниезащита. Молниезащита – это система защитных устройств и мероприятий, применяемых в промышленных и гражданских сооружениях для защиты их от аварии, пожаров при попадании в них молнии. Молния – особый вид прохождения электрического тока через огромные воздушные промежутки, источник которого – атмосферный заряд, накопленный грозовым облаком.
Различают три типа воздействия тока молнии: прямой удар, вторичное воздействие заряда молнии и занос высоких потенциалов (напряжения) в здания. При прямом разряде молнии в здание или сооружение может произойти его механическое или термическое разрушение. Последнее проявляется в виде плавления или даже испарения материалов конструкции.
Вторичное воздействие разряда молнии заключается в наведении в замкнутых токопроводящих контурах (трубопроводах, электропроводках и др.), расположенных внутри зданий, электрических токов. Эти токи могут вызвать искрение или нагрев металлических конструкций, что может стать причиной возникновения пожара или взрыва в помещениях, где используются горючие или взрывоопасные вещества. К этим же последствиям может привести и занос высоких потенциалов (напряжения) по любым металлоконструкциям, находящимся внутри зданий и сооружений под действием молнии.
Для защиты от действия молнии устраивают молниеотводы (громоотводы). Это заземленные металлические конструкции, которые воспринимают удар молнии и отводят ее ток в землю. Различают стержневые и тросовые молниеотводы. Их защитное действие основано на свойстве молний поражать наиболее высокие и хорошо заземленные металлические конструкции.
Молниеотводы характеризуются зоной защиты, которая определяется как часть пространства, защищенного от удара молнии с определенной степенью надежности. В зависимости от степени надежности зоны защиты могут быть двух типов — А и Б. Тип зоны защиты выбирают в зависимости от ожидаемого количества поражений молнией зданий и сооружений в год (N). Если величина N > 1, то принимают зону защиты типа А (степень надежности защиты в этом случае составляет не менее 99,5%). При N £ 1 принимают зону защиты типа В (степень надежности этой защиты – 95% и выше).
Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:
2. Защита человека от поражения электрическим током
Безопасность при работе с электроустановками обеспечивается применением различных технических и организационных мер. Они регламентированы действующими правилами устройства электроустановок (ПУЭ). Технические средства защиты от поражения электрическим током делятся на коллективные и индивидуальные, на средства, предупреждающие прикосновение людей к элементам сети, находящимся под напряжением, и средства, которые обеспечивают безопасность, если прикосновение все-таки произошло.
Основные способы и средства электрозащиты:
• изоляция токопроводящих частей и ее непрерывный контроль;
• установка оградительных устройств;
• предупредительная сигнализация и блокировки;
• использование знаков безопасности и предупреждающих плакатов;
• использование малых напряжений;
• электрическое разделение сетей;
• средства индивидуальной электрозащиты.
Изоляция токопроводящих частей — одна из основных мер электробезопасности. Согласно ПУЭ сопротивление изоляции токопроводящих частей электрических установок относительно земли должно быть не менее 0,5—10 МОм 1 . Различают рабочую, двойную и усиленную рабочую изоляцию.
Рабочей называется изоляция, обеспечивающая нормальную работу электрической установки и защиту персонала от поражения электрическим током. Двойная изоляция, состоящая из рабочей и дополнительной, используется в тех случаях, когда требуется обеспечить повышенную электробезопасность оборудования (например, ручного электроинструмента бытовых электрических приборов и т.д.). Сопротивление двойной изоляции должно быть не менее 5 МОм, что в 10 раз пре вышает сопротивление обычной рабочей. В ряде случаев рабочую изоляцию выполняют настолько надежно, что ее электросопротивление составляет не менее 5 МОм и потому она обеспечивает такую же защиту от поражения током, как и двойная. Такую изоляцию называют усиленной рабочей изоляцией.
Существуют основные и дополнительные изолирующие средства. Основными называют такие электрозащитные средства, изоляция которых надежно выдерживает рабочее напряжение. Дополнительные электрозащитные средства усиливают изоляцию человека от токопроводящих частей и земли. В табл. 20.2 приведены основные сведения об изолирующих электрозащитных средствах.
Неизолированные токопроводящие части электроустановок, работающих под любым напряжением, должны быть надежно ограждены или расположены на недоступной высоте, чтобы исключить случайное прикосновение к ним человека. Конструктивно ограждения изготавливают из сплошных металлических листов или металлических сеток.
Для предупреждения об опасности поражения электрическим током используют различные звуковые, световые и цветовые сигнализаторы, устанавливаемые в зонах видимости и слышимости персонала. Кроме того, в конструкциях электроустановок предусмотрены блокировки — автоматические устройства, с помощью которых преграждается путь в опасную зону или предотвращаются неправильные, опасные для человека действия. Блокировки могут быть механические (стопоры, защелки, фигурные вырезы), электрические или электромагнитные. Для информации персонала об опасности служат предупредительные плакаты, которые в соответствии с назначением делятся на предостерегающие, запрещающие, разрешающие и напоминающие. Части оборудования, представляющие опасность для людей, окрашивают в сигнальные цвета и на них наносят знак безопасности (в соответствии с ГОСТом 12.4.026-76 «Цвета сигнальные и знаки безопасности»). Красным цветом окрашивают кнопки и рычаги аварийного отключения электроустановок.
Таблица 2. Классификация изолирующих электрозащитных средств
Для уменьшения опасности поражения током людей, работающих с переносным электроинструментом и осветительными лампами, используют малое напряжение, не превышающее 42 В. В ряде случаев, например, при работе в металлическом резервуаре, для питания ручных переносных ламп используют напряжение 12 В.
Для повышения безопасности проводят электрическое разделение сетей на отдельные короткие электрически не связанные между собой участки с помощью разделяющих трансформаторов. Такие разделенные сети обладают малой емкостью и высоким сопротивлением изоляции. Раздельное питание используют при работе с переносными электрическими приборами, на строительных площадках, при ремонтах на электростанциях и др.
При замыканиях тока на конструктивные части электрооборудования (замыкание на корпус) на них появляются напряжения, достаточные для поражения людей или возникновения пожара. Осуществить защиту от поражения электрическим током и возгорания в этом случае можно тремя путями: защитным заземлением, занулением и защитным отключением.
Защитное заземление — это преднамеренное соединение с землей или ее эквивалентом металлических нетоковедущих частей электрооборудования, которые в обычном состоянии не находятся под напряжением, но могут оказаться под ним при случайном соединении их с токоведущими частями.
Если произошло замыкание и корпус электроустановки оказался под напряжением, то прикоснувшийся к нему человек попадает под напряжение прикосновения (Упр), которое определяется выражением:
(9)
где V3 — полное напряжение на корпусе электроустановки, В;
Vх — потенциал поверхности земли или пола, В.
Таким образом, напряжением прикосновения называется напряжение между двумя точками цепи тока, которых одновременно может коснуться человек.
Рассмотрим схему действия защитного заземления на примере трехфазной сети с изолированной нейтралью (рис. 3).
Если человек прикоснется к заземленной электроустановке, находящейся под напряжением, то он попадет под напряжение прикосновения, определяемое по Формуле:
где апр — коэффициент напряжения прикосновения или просто коэффициент прикосновения (апр < 1 и зависит от вида заземлителя);
Iз — ток замыкания, А;
Rз — сопротивление защитного заземления, Ом.
Ток, проходящий через тело человека, попавшего под напряжение прикосновения (I А чел , А), составит:
где Rс — сопротивление растеканию тока в земле, зависящее от удельного сопротивления земли и сопротивления подошвы обуви человека, Ом.
Если человек находится в условиях высокой влажности (Rс -> 0), предыдущую формулу можно упростить:
Рассчитаем I А чел для случая, если Iз= 4 А, Rз = 4 Ом и апр = 0,4 (контурный заземлитель):
Этот ток безопасен для человека, так как не превышает значения неотпускающего тока (10 мА).
Таким образом, принцип действия защитного заземления заключается в снижении до безопасных значений напряжений прикосновения (и напряжения шага), вызванных замыканием на корпус.
Защитному заземлению (занулению) подвергают металлические части электроустановок и оборудования, доступные для прикосновения человека и не имеющие других видов защиты, например, корпуса электрических машин, трансформаторов, светильников, каркасы распределительных щитов, металлические трубы и оболочки электропроводок, а также металлические корпуса переносных электроприемников.
Обязательно заземляют электроустановки, работающие под напряжением 380 В и выше переменного тока и питающиеся от источника постоянного тока с напряжением 440 В и выше. Кроме того, в помещениях повышенной и особой опасности заземляют установки с напряжением от 42 до 380 В переменного тока и от 110 до 440 В постоянного тока.
Заземляющее устройство — это совокупность заземлителей — металлических проводников, соприкасающихся с землей, и заземляющих проводников, соединяющих заземляемые части электроустановки с заземлителем. В зависимости от взаимного расположения заземлителей и заземляемого оборудования различают выносные и контурные заземляющие устройства. Первые из них характеризуются тем, что заземлители вынесены за пределы площадки, на которой размещено заземляемое оборудование, или сосредоточены на некоторой части этой площадки (рис. 4).
Контурное заземляющее устройство (рис. 5), заземлители которого располагаются по контуру (периметру) вокруг заземляемого оборудования на небольшом расстоянии друг от друга (несколько метров), обеспечивает лучшую степень защиты, чем предыдущее.
Заземлители бывают искусственные, которые используются только для целей заземления, и естественные, в качестве которых используют находящиеся в земле трубопроводы (за исключением трубопроводов горючих жидкостей или газов), металлические конструкции, арматуру железобетонных конструкций, свинцовые оболочки кабелей и др. Искусственные заземлители изготавливают из стальных труб, уголков, прутков или полосовой ткани.
Требования к сопротивлению защитного заземления регламентируются ПУЭ. В любое время года это сопротивление не должно превышать:
• 4 Ом — в установках, работающих под напряжением до 1000 В; если мощность источника тока составляет 100 кВ*А и менее, то сопротивление заземляющего устройства может достигать 10 Ом;
• 0,5 Ом — в установках, работающих под напряжением выше 1000 В с эффективно заземленной нейтралью. Наибольшее сопротивление заземляющего устройства (R, Ом) не должно быть более 250/ Iз (но не более 10 Ом) в установках напряжением выше 1000 В с изолированной нейтралью. При использовании заземляющего устройства одновременно для установок напряжением до 1000 В, R не должно быть более 125/ Iз (но не более 4 или 10 Ом соответственно). В этих формулах Iз — ток замыкания на землю, А.
Защитное зануление предназначено для защиты в трехфазных четырехпроводных сетях с глухозаземленной нейтралью, работающих под напряжением до 1000 В, так как в этих сетях использование защитного заземления неэффективно. Обычно это сети 220/127, 380/220 и 660/380 В.
Рассмотрим действие защитного зануления подробнее. Пусть имеется трехфазная трехпроводная сеть, работающая под напряжением до 1000 В с заземленной нейтралью (рис. 6).
Если в такой схеме одна из фаз будет замкнута на корпус электропроводки (показана на схеме молниеобразной стрелкой), то величина тока (Iз, А), протекающего в сети, определится из следующей зависимости:
(14)
где Vф — фазное напряжение, В;
Ro — сопротивление заземления нейтрали, Ом;
Iз — сопротивление корпуса электроустановки, Ом.
При этом на корпусе электроустановки возникает напряжение относительно земли (Vк), определяемое следующей формулой:
(15)
Рассчитаем величину тока короткого замыкания (1к, А) для значений Vф = 220 В и R0 = Rз = 4 Ом:
(16)
Ток короткого замыкания /3 может оказаться недостаточным для срабатывания защиты, и электроустановка может не отключиться. Корпус электроустановки находится под опасным напряжением. Если человек случайно прикоснется к корпусу электроустановки, находящейся под этим напряжением, то ток, протекающий через тело человека, составит:
(17)
где апр — коэффициент напряжения прикосновения.
Если апр = 1 и VK = 110 В, то Iчел = 110/1000 = 0,11 А = 110 мА. Этот ток превышает значение фибрилляционного, поэтому является смертельно опасным. Таким образом, защитное заземление в этом случае не обеспечивает надежной защиты человека, поэтому используют не заземление, а зануление.
Занулением называют способ защиты от поражения током автоматическим отключением поврежденного участка сети и одновременно снижением напряжения на корпусах оборудования на время, пока не сработает отключающий аппарат (плавкие предохранители, автоматы и др.). Зануление — это преднамеренное соединение с нулевым защитным проводником металлических нетокопроводяших частей, которые могут оказаться под напряжением (рис. 7).
Проводник (1), который соединяет зануляемые части элекроустановки с глухозаземленной нейтральной точкой обмотки трансформатора, называют нулевым защитным. Назначение этого проводника заключается в создании для тока короткого замыкания электрической цепи с малым электросопротивлением (цепь обозначена на рисунке цифрами I — II — III — IV — V), чтобы данный ток был достаточен для быстрого отключения повреждения от сети. Это достигается срабатыванием элемента защиты сети от тока короткого замыкания (на рисунке этот элемент обозначен цифрой 2).
Цепь зануления I — II — III — IV — V имеет очень малое электрическое сопротивление (доли Ом). Ток короткого замыкания, возникающий при замыкании на корпус и проходящий по цепи зануления, достигает большого значения (нескольких сотен ампер), что обеспечивает быстрое и надежное срабатывние элементов защиты.
Для устранения опасности обрыва нулевого провода устраивают его повторное многократное рабочее заземление через каждые 250 м.
Основное требование безопасности к занулению: оно должно обеспечивать надежное и быстрое срабатывание защиты. Для этого необходимо выполнение следующего условия:
IKз >k IHOM, (18)
где Iном — номинальное значение тока, при котором происходит срабатывание элемента защиты;
k — коэффициент, характеризующий кратность тока короткого замыкания относительно номинального значения тока, при котором срабатывает элемент защиты.
Время срабатывания элементов защиты зависит от силы тока. Так, для плавких предохранителей и тепловых автоматов при k = 10 время срабатывания предохранителя составляет 0,1 с, а при k = 3—0,2 с. Электромагнитный автоматический выключатель обесточивает сеть за 0,01 с. Согласно требованиям ПУЭ в помещениях с нормальными условиями k должен находиться в пределах 1,2—3, а во взрывоопасных помещениях — k = 1,4—6.
Еще одна система защиты — защитное отключение — это защита от поражения электрическим током в электроустановках, работающих под напряжением до 1000 В, автоматическим отключением всех фаз аварийного участка сети за время, допустимое по условиям безопасности для человека.
Основная характеристика этой системы — быстродействие, оно не должно превышать 0,2 с. Принцип защиты основан на ограничении времени протекания опасного тока через тело человека. Существуют различные схемы защитного отключения, одна из них, основанная на использовании реле напряжения, представлена на рис. 20.8.
При замыкании фазного провода на заземленный или зануленный корпус электроустановки на нем возникает напряжение корпуса VK. Если оно превышает заранее установленное предельно допустимое напряжение VK доп (т. е. если VK > Ук доп), срабатывает защитное отключающее устройство. Схема работает следующим образом.
Вследствие разности потенциалов между корпусом электроустановки 1 и землей возникает ток Iр , который, проходя через реле 5, замыкает его контакты, подавая питание на отключающую катушку 3. Под влиянием возникшего электромагнитного поля внутрь нее втягивается сердечник 4, вызывая отключение автоматического выключателя 2, и установка обесточивается.
Защитное отключение рекомендуется применять:
• в передвижных установках напряжением до 1000 В;
• для отключения электрооборудования, удаленного от источника питания, как дополнение к занулению;
• в электрифицированном инструменте как дополнение к| защитному заземлению или занулению;
• в скальных и мерзлых грунтах при невозможности выполнить необходимое заземление.
1 — корпус электроустановки; 2 — автоматический выключатель; 3 — отключающая катушка; 4 — сердечник катушки; 5 — реле максимального
напряжения; Rз — сопротивление защитного заземления; I3 — ток замыкания; Ip — ток, протекающий через реле; R1 — сопротивление вспомогательного заземления
Рис. 8. Схема защитного отключения
Рассмотрим кратко организационные мероприятия, обеспечивающие безопасную эксплуатацию электроустановок. К ним относятся оформление соответствующих работ нарядом или распоряжением, допуск к работе, надзор за проведением работ, строгое соблюдение режима труда и отдыха, переходов на другие работы и окончания работ.
Нарядом для проведения работы в электроустановках называют составленное на специальном бланке задание на ее безопасное производство, определяющее содержание, место, время начала и окончания работы, необходимые меры безопасности, состав бригад и лиц, ответственных за безопасность выполнения работ. Распоряжением называют то же задание на безопасное производство работы, но с указанием содержания работы, места, времени и лиц, которым поручено ее выполнение.
Все работы на токопроводящих частях электроустановок под напряжением и со снятием напряжения выполняют по наряду, кроме кратковременных работ (продолжительностью не более 1 ч), требующих участия не более трех человек. Эти работы выполняют по распоряжению.
К организационным мероприятиям также относятся обучение персонала правильным приемам работы с присвоением работникам, обслуживающим электроустановки, соответствующих квалификационных групп. Сведения о квалификационных группах персонала представлены в табл. 3.
В ряде случаев существенную опасность для человека представляет статическое электричество, под которым понимают совокупность явлений, связанных с возникновением, сохранением и релаксацией (ослаблением) свободного электрического заряда на поверхности и в объеме диэлектрических веществ, материалов, изделий или на изолированных проводниках. Протекание различных технологических процессов, таких, как измельчение, распыление, фильтрование и другие, сопровождается электризацией материалов и оборудования, причем возникающий на них электрический потенциал достигает значений тысяч и десятка тысяч вольт. Воздействие статического электричества на организм человека проявляется в виде слабого длительно протекающего тока либо в форме кратковременного разряда через тело человека, в результате чего может произойти несчастный случай.
Вредное воздействие на организм человека оказывает и электрическое поле повышенной напряженности. Оно вызывает функциональные изменения центральной нервной, сердечнососудистой и некоторых других систем организма.
Защиту от статического электричества осуществляют по двум основным направлениям: уменьшение генерации электрических зарядов и устранение зарядов статического электричества. Для реализации первого направления необходимо правильно подбирать конструкционные материалы, из которых изготавливаются машины, агрегаты и прочее технологическое оборудование. Эти материалы должны быть слабо электризующимися или неэлектризующимися. Например, синтетический материал, состоящий на 40% из нейлона и 60% дакрона, не электризуется при трении о хромированную поверхность.
Таблица 3. Квалификационные группы персонала, обслуживающего электроустановки
Для снятия зарядов статического электричества с поверхности технологического оборудования его обязательно заземляют.
Кроме перечисленных способов защиты от статического электричества большое значение имеет снижение удельного поверхностного электрического сопротивления перерабатываемых материалов. Это достигается повышением относительной влажности в помещении, где производится обработка поглощающих воду материалов (древесины, бумага, хлопчатобумажной ткани и др.), до 65—70%, нанесением на их поверхность специальных антистатических составов, введением в состав твердых диэлектриков электропроводящих материалов (графита, углеродных волокон, алюминиевой пудры и т.д.). Существуют и другие методы защиты от статического электричества.