Что такое трансформатор со средней точкой
Перейти к содержимому

Что такое трансформатор со средней точкой

  • автор:

2.2 Двухполупериодная схема со средней точкой (схема Миткевича)

Однофазный двухполупериодный выпрямитель со средним (нулевым) выводом вторичной обмотки трансформатора (рис. 1.3, а) применяют в низковольтных устройствах. Он позволяет уменьшить вдвое число диодов и тем самым понизить потери, но имеет более низкий коэффициент использования трансформатора и, следовательно, большие габариты по сравне­нию с однофазным мостовым выпрямителем, который рассмотрен ниже. Обратное напряжение на диодах выше в этой схеме, чем в мостовой.

Необходимым элементом данного выпрямителя является трансформатор с двумя вторичными обмотками. Выпрямитель со средней точкой является по существу двухфазным, так как вторичная обмотка трансформатора со средней точкой создает две ЭДС, равные по величине, но противоположные по направлению. Таким образом, схема соединения обмоток такова, что одинаковые по величине напряжения на выводах вторичных обмоток относительно средней точки сдвинуты по фазе на 180º.

Диаграммы напряжений и токов, поясняющие работу двухполупериодного выпрямителя со средним выводом на активную нагрузку с учетом потерь в трансформаторе и вентилях, представлены на рис.1.3,б.

Рис. 1.3. Двухполупериодная схема выпрямления со средней точкой (а) и диаграммы напряжений и токов в ней при работе на активную нагрузку (б).

Вторичные обмотки трансформатора подключены к анодам вентилей VD1 и VD2. Напряжения на вторичных обмотках трансформатора w21 и w22 находятся в противофазе. Поэтому диоды схемы VD1 и VD2 проводят ток поочередно, каждый в соответствующий полупериод питающего напряжения. В течение первого полупериода положительный потенциал имеет анод диода VD1 и ток ivd1 проходит через него, нагрузку и вторичную полуобмотку w21 трансформатора. В течение второго полупериода положительный потенциал имеет анод диода VD2, ток ivd2 проходит через него, нагрузку и вторичную полуобмотку w22 трансформатора, причем в цепи нагрузки ток id проходит в том же направлении, что и в первый полупериод.

Таким образом, в отличие от простейшего однополупериодного выпрямителя в выпрямителе со средней точкой выпрямленный ток проходит через нагрузку в течение обоих полупериодов переменного тока, но каждая из половин вторичной обмотки трансформатора оказывается нагруженной током только в течение полупериода. В результате встречного направления м.д.с. постоянных составляющих токов вторичных обмоток i21 и i22 в сердечнике трансформатора нет вынужденного подмагничивания.

Рассмотрим расчет коэффи­циента использования трансформатора по мощности для выпрямителя без потерь при активной нагрузке на примере двухполупериодной схемы со средней точкой.

Выходное напряжение ud снимается в данной схеме между средней (нулевой) точкой трансформатора и общей точкой соединения катодов обоих вентилей. Среднее напряжение на нагрузке

т.е. между средним значением выпрямленного напряжения и действующим значением существует то же соотношение, что связывает среднее и действующее значение синусоидального тока.

Поскольку ток id протекает через диоды поочередно, средний ток через каждый диод составит:

Ivd = Id / 2,

Обратное напряжение прикладывается к закрытому диоду, когда проводит ток другой диод. Поскольку к закрытому диоду в этой схеме максимально прикладывается двойное амплитудное напряжение вторичной стороны, то

Величина Ud при расчете выпрямителя является заданной, поэтому находим действующее значение напряжения на вторичной обмотке трансформатора

Действующее значение тока вторичной обмотки трансформатора

Габаритная мощность вторичных обмоток трансформатора

Габаритная мощность первичной обмотки трансформатора

S1 = U1 / I1 ; U1 = U2 / n; I1 = n I2;

Коэффициент использования трансформатора по мощности в двухполупериодной схеме со средней точкой

Таким образом, габаритная мощность трансформатора в двухполупериодной схеме со средней точкой в 1,48 раза превышает мощность в нагрузке.

1.2. Основные схемы выпрямления Однофазная, однополупериодная схема

Однофазную, однополупериодную схему (рис. 1.2, а) обычно применяют при выпрямленных токах до нескольких десятков миллиампер и в тех случаях, когда не требуется высокой степени сглаживания выпрямленного напряжения. Эта схема характеризу­ется низким коэффициентом использования трансформатора по мощности и большими пульсациями выпрямленного напряжения.

Диаграммы напряжений и токов, поясняющие работу однополупериодного выпрямителя на активную нагрузку с учетом потерь в трансформаторе и вентиле, представлены на рис. 1.2,б. Индуктивностью рассеяния трансформатора пренебрегаем, как это обычно допускается в выпрямителях малой мощности [2].

Рис. 1.2. Однофазная, однополупериодная схема выпрямления (а) и

диаграммы напряжений и токов в ней при работе на активную нагрузку (б).

Под действием ЭДС вторичной обмотки ток в цепи нагрузкиможет проходить только в течение тех полупериодов, когда анод диода имеет положительный потенциал относительно катода. Диод пропускает токв первый полупериод, во второй полупериод, когда потенциал анода становится отрицательным, ток в цепи равен нулю. Выпрямленное напряжениев любой момент времени меньше ЭДС вторичной обмотки, так как часть напряжения теряется на активных сопротивлениях трансформатора и открытого вентиля (учитывается сопротивлениемr). Максимальное обратное напряжение на вентиле , как видно из рис. 1.2,б, достигает амплитудного значения ЭДС вторичной обмотки.

Диаграмма первичного тока трансформатора подобна диаграмме вторичного тока, если пренебречь током намагничивания и исключить из него постоянную составляющую , которая в первичную обмоткуне трансформируется. В сердечнике трансформатора за счет постоянной составляющей тока вторичной обмотки создается добавочный постоянный магнитный поток, насыщающий сердечник. Это явление называют – вынужденное подмагничивание сердечника трансформатора постоянной составляющей тока, которое является главным недостатком этой схемы. В результате насыщения намагничивающий ток трансформатора возрастает в несколько раз по сравнению с током в нормальном режиме намагничивания сердечника. Возрастание намагничивающего тока обусловливает увеличение сечения провода первичной обмотки, следствием чего являются завышенные размеры трансформатора и габариты выпрямителя в целом [2].

Двухполупериодная схема со средней точкой (схема Миткевича)

Однофазный двухполупериодный выпрямитель со средним (нулевым) выводом вторичной обмотки трансформатора (рис. 1.3, а) применяют в низковольтных устройствах. Он позволяет уменьшить вдвое число диодов и тем самым понизить потери, но имеет более низкий коэффициент использования трансформатора и, следовательно, большие габариты по сравне­нию с однофазным мостовым выпрямителем, который рассмотрен ниже. Обратное напряжение на диодах выше в этой схеме, чем в мостовой.

Необходимым элементом данного выпрямителя является трансформатор с двумя вторичными обмотками. Выпрямитель со средней точкой является по существу двухфазным, так как вторичная обмотка трансформатора со средней точкой создает две ЭДС, равные по величине, но противоположные по направлению. Таким образом, схема соединения обмоток такова, что одинаковые по величине напряжения на выводах вторичных обмоток относительно средней точки сдвинуты по фазе на 180º.

Диаграммы напряжений и токов, поясняющие работу двухполупериодного выпрямителя со средним выводом на активную нагрузку с учетом потерь в трансформаторе и вентилях, представлены на рис.1.3,б.

Рис. 1.3. Двухполупериодная схема выпрямления со средней точкой (а) и диаграммы напряжений и токов в ней при работе на активную нагрузку (б).

Вторичные обмотки трансформатора подключены к анодам вентилей VD1 и VD2. Напряжения на вторичных обмотках трансформатора w21 и w22 находятся в противофазе. Поэтому диоды схемы VD1 и VD2 проводят ток поочередно, каждый в соответствующий полупериод питающего напряжения. В течение первого полупериода положительный потенциал имеет анод диода VD1 и ток проходит через него, нагрузку и вторичную полуобмоткуw21 трансформатора. В течение второго полупериода положительный потенциал имеет анод диода VD2, ток проходит через него, нагрузку и вторичную полуобмоткуw22 трансформатора, причем в цепи нагрузки ток проходит в том же направлении, что и в первый полупериод.

Таким образом, в отличие от простейшего однополупериодного выпрямителя в выпрямителе со средней точкой выпрямленный ток проходит через нагрузку в течение обоих полупериодов переменного тока, но каждая из половин вторичной обмотки трансформатора оказывается нагруженной током только в течение полупериода. В результате встречного направления м.д.с. постоянных составляющих токов вторичных обмоток ив сердечнике трансформаторанет вынужденного подмагничивания [2].

Рассмотрим расчет коэффи­циента использования трансформатора по мощности для выпрямителя без потерь при активной нагрузке на примере двухполупериодной схемы со средней точкой [3].

Выходное напряжение снимается в данной схеме между средней (нулевой) точкой трансформатора и общей точкой соединения катодов обоих вентилей. Среднее напряжение на нагрузке

,

т.е. между средним значением выпрямленного напряжения и действующим значением существует то же соотношение, что связывает среднее и действующее значение синусоидального тока.

Среднее значение тока через нагрузку

Поскольку ток протекает через диоды поочередно, средний ток через каждый диод составит

,

Обратное напряжение прикладывается к закрытому диоду, когда проводит ток другой диод. Поскольку к закрытому диоду в этой схеме максимально прикладывается двойное амплитудное напряжение вторичной стороны, то

Величина при расчете выпрямителя является заданной, поэтому находим действующее значение напряжения на вторичной обмотке трансформатора

Действующее значение тока вторичной обмотки трансформатора

Габаритная мощность вторичных обмоток трансформатора

Габаритная мощность первичной обмотки трансформатора

; ;;

Коэффициент использования трансформатора по мощности в двухполупериодной схеме со средней точкой

Таким образом, габаритная мощность трансформатора в двухполупериодной схеме со средней точкой в 1,48 раза превышает мощность в нагрузке.

Что такое трансформатор со средней точкой

Формула

Выпрямители

Назначение выпрямителя

Назначение выпрямителя

Выпрямители используются для превращения переменного напряжения в постоянное. Их схемотехника состоит в том, чтобы направить входной переменный ток таким образом, чтобы через выходную нагрузку он протекал только в одном направлении. Выпрямители бывают пассивные и активные. В пассивных выпрямителях используются приборы с односторонней проводимостью – диоды. В активных выпрямителях используются электронные коммутационные элементы (MOSFET, IGBT, биполярные), включаемые по определенному алгоритму с синхронизацией с полярностью входного напряжения. Поэтому они часто называются синхронными выпрямителями.

Часто выпрямитель устанавливается сразу после трансформатора. Это справедливо как для низкочастотных, так и для высокочастотных схем. Поэтому схемотехника выпрямителей будет представлена в связке с трансформатором и пока только с резистивной нагрузкой.

Однополупериодный выпрямитель

Самая простая схема выпрямления (рисунок RECT.1). Всего один диод. В течение положительной полуволны диод открыт и напряжение прикладывается к нагрузке. Соответственно через нагрузку течет ток. Во время отрицательной полуволны диод закрыт, и ток через нагрузку не протекает. В результате максимальная амплитуда напряжения на нагрузке VR меньше амплитуды входного переменного напряжения VA на величину VF – прямого падения напряжения на диоде:

Формула

Выходное напряжение имеет форму полусинусоидальных волн (рисунок RECT.2) чередующихся паузами длительностью полпериода. Трансформатор нагружен только в периоды прямой проводимости диода. Максимальное напряжение на диоде равно удвоенному входному максимальному напряжению 2VA.

— только один диод, минимальная сложность схемы, минимальная стоимость выпрямления;

— высокие пульсации напряжения в нагрузке;

— подмагничивание сердечника трансформатора, неравномерная нагрузка на сеть (относится к низкочастотным трансформаторам, и импульсным двухтактным схемам) вследствие того, что мощность потребляется только в течение половины периода.

— в обратноходовых и прямоходовых однотактных преобразователях;

— в дополнительных цепях питания, имеющих существенном меньшую нагрузку по сравнению с основной.

Мостовой выпрямитель

Наиболее распространенная двухполупериодная схема выпрямления (рисунок RECT.3).Четыре диода, включенные таким образом, что работают попеременно. В течение положительного полупериода ток проводят диоды VD2 и VD3, в течение отрицательного – VD1 и VD4. Таким образом, мостовой выпрямитель обеспечивает подключение нагрузки к источнику в течение всего периода переменного напряжения. Выходное напряжение имеет форму полусинусоидальных волн, следующих друг за другом (рисунок RECT.4). Амплитуда напряжения на нагрузке меньше амплитуды входного переменного напряжения на величину 2VF – сумму падения напряжения на диодах, поскольку в мостовой схеме ток проходит через два диода:

Формула

Именно поэтому применение мостовой схемы нецелесообразно при низких входных напряжениях (менее 12-15 В) поскольку «все упадет» на диодах.

Максимальное напряжение на диодах равно единичному входному максимальному напряжению VA.

— малые пульсации напряжения в нагрузке;

— обеспечивает симметричную нагрузку трансформатора (без подмагничивания);

— нет необходимости в использовании хитрого трансформатора со средней точкой.

— четыре диода, определенная сложность схемы,

— высокий относительный уровень потерь (низкий КПД) при малом входном напряжении.

— в выходных выпрямителях двухтактных преобразователей при высоком выходном напряжении (более 15 В);

— в схемах с низкочастотным трансформатором;

— во входной цепи преобразователей с бестрансформаторным входом;

— в дополнительных цепях питания.

Двухполупериодный выпрямитель со средней точкой трансформатора

Основная схема выпрямления для малых выходных напряжений (12 В и менее). Особенность схемы состоит в использовании фактически двух выходных обмоток трансформатора, соединённых вместе так, чтобы напряжение на выводах обмоток относительно общей точки было противоположно по фазе (рисунок RECT.5). При этом в течение одного полупериода «работает» обмотка «1» с диодом VD1, а в другом полупериоде «работает» обмотка «2» с диодом VD2. При этом «полусинусоиды» поочередно складываются в результирующее напряжение на нагрузке, имеющее форму полуволн следующих друг за другом, как в мостовом преобразователе (рисунок RECT.6). Амплитуда напряжения на нагрузке меньше амплитуды входного переменного напряжения на величину VF – прямого падения напряжения на диоде:

Формула

В некотором роде этот выпрямитель представляет собой два однополупериодных выпрямителя включенных параллельно друг другу, но питающихся от обмоток находящихся в противофазе. Максимальное напряжение на диодах равно удвоенному входному максимальному напряжению 2VA.

— малые пульсации напряжения в нагрузке;

— обеспечивает симметричную нагрузку трансформатора (без подмагничивания);

— всего два диода, меньше в двухполупериодных схемах не бывает;

— высокая энергетическая эффективность, в том числе при малых выходных напряжениях.

— использование хитрого трансформатора с отводом от средней точки или соединенных двух обмоток, кроме этого габаритная мощность трансформатора должна быть выше по сравнению с мостовой схемой;

— два диода, сравнительная сложность схемы подключения вследствие необходимости соблюдать фазировку обмоток трансформатора;

— высокий относительный уровень потерь (низкий КПД) при малом входном напряжении.

— в выходных выпрямителях двухтактных преобразователей, в том числе при низком выходном напряжении (более 15 В);

— в схемах с низкочастотным трансформатором;

— в сильноточных и низковольтных цепях.

В реальности амплитуды напряжений обмоток (и их мощности) могут несколько отличаться друг от друга. Это необходимо контролировать экспериментально.

Работа выпрямителей совместно с конденсатором фильтра

Как правило, выпрямители работают в связке с конденсатором фильтра выполняющим функцию буферного накопителя энергии и сглаживающим пульсации напряжения. Эта схема включения выпрямителей имеет свои особенности. Об этом ниже.

Однополупериодный выпрямитель с конденсатором фильтра

Каждый из циклических периодов работы схемы однополупериодного выпрямителя с конденсатором фильтра можно условно разделить на два интервала (рисунок RECT.8):

I – в течение первого интервала когда напряжение источника превышает текущее значение напряжения на конденсаторе, диод находится в прямом смещении и проводит ток который подзаряжает конденсатор фильтра.

II – в течение второго интервала, который начинается когда напряжение источника становится меньше напряжения на только что подзаряженном конденсаторе фильтра, при этом к диоду приложено обратное напряжение и он не проводит ток. В этом интервале напряжение на фильтрующем конденсаторе плавно уменьшается в результате разряда током нагрузки. Величина обратного напряжения приложенного к диоду складывается из напряжения на конденсаторе VC и напряжения источника (обратная полуволна). Таким образом, в точке максимума к диоду фактически прикладывается удвоенное напряжение источника.

Резюме: Подзаряд конденсатора фильтра происходит только один раз в течение всего периода. К диоду прикладывается удвоенное напряжение питания выпрямителя.

Мостовой выпрямитель с конденсатором фильтра

В данном случае каждый из циклических периодов работы схемы однополупериодного выпрямителя с конденсатором фильтра можно условно разделить на четыре интервала (рисунок RECT.10):

I – в течение первого интервала текущее значение напряжения источника (положительная полуволна) превышает напряжение на конденсаторе, диоды VD2, VD3 в открыты прямом смещении и ток источника подзаряжает конденсатор фильтра. При этом к диодам VD1, VD4 прикладывается обратное напряжение равное VA (которое в этот период достигает своего максимума):

Формула Формула

VF – прямого падения напряжения на диоде.

II – в течение второго интервала, который начинается когда напряжение источника становится меньше напряжения на подзаряженном конденсаторе фильтра к диодам VD2, VD3прикладывается запирающее напряжение. В этот период все диоды моста находятся в закрытом состоянии и напряжение между ними перераспределятся по закону (рисунок RECT.10):

Формула Формула

Напряжение на фильтрующем конденсаторе VC плавно уменьшается в результате разряда током нагрузки.

III – в течение третьего интервала в момент когда напряжение отрицательной полуволны превышает напряжение на конденсаторе, другая пара диодов VD1, VD4 открывается и снова подзаряжается конденсатор фильтра. При этом уже к другой паре диодов VD2, VD3 прикладывается обратное напряжение равное VA (которое в этот период достигает своего максимума).

Формула Формула

IV – в течение четвертого интервала, который начинается когда напряжение источника становится меньше напряжения на подзаряженном конденсаторе фильтра к диодам VD2, VD3прикладывается запирающее напряжение. В этот период все диоды моста находятся в закрытом состоянии и напряжение между ними перераспределятся по закону (рисунок RECT.10):

Формула Формула

В течение интервала напряжение на фильтрующем конденсаторе плавно уменьшается в результате разряда током нагрузки.

Резюме: Подзаряд конденсатора фильтра происходит два раза в течение всего периода. Максимальное обратное напряжение, прикладываемое к диоду равно амплитуде напряжения питания выпрямителя.

Двухполупериодный выпрямитель со средней точкой с конденсатором фильтра

Аналогично мостовому выпрямителю каждый из циклических периодов работы схемы однополупериодного выпрямителя с конденсатором фильтра можно условно разделить на четыре интервала (рисунок RECT.12):

I – в течение первого интервала текущее значение напряжения VA1 верхней обмотки превышает напряжение на конденсаторе, диод VD1 в открыт и к конденсатор фильтра подзаряжается. При этом диоду VD2 прикладывается обратное напряжение сумме напряжений обмотки трансформатора VA2 (которое в этот период достигает своего максимума) и напряжения на конденсаторе VC:

Рисунок-схема Рисунок-схема

II – в течение второго интервала, который начинается когда напряжение на верхней обмотке становится меньше напряжения на подзаряженном конденсаторе фильтра CF к диоду VD1 прикладывается запирающее напряжение. В этот период оба диода находятся в закрытом состоянии и напряжение между ними перераспределятся по закону (рисунок RECT.12):

Формула Формула

В течение интервала напряжение на конденсаторе фильтра плавно уменьшается в результате разряда током нагрузки.

III – в течение третьего интервала аналогично интервалу I когда текущее значение напряжения VA2 верхней обмотки превышает напряжение на конденсаторе, диод VD2открывается и конденсатор фильтра подзаряжается. К диоду VD1 прикладывается обратное напряжение сумме напряжений обмотки трансформатора VA1 (которое в этот период достигает своего максимума) и напряжения на конденсаторе VC:

Формула Формула

IV – в течение четвертого интервала, который начинается когда напряжение на нижней обмотке VA2 становится меньше напряжения на подзаряженном конденсаторе фильтра к диоду VD2 прикладывается запирающее напряжение. В этот период оба диода находятся в закрытом состоянии и напряжение между ними перераспределятся по закону (рисунок RECT.12):

Формула Формула

В течение интервала напряжение на конденсаторе фильтра плавно уменьшается в результате разряда током нагрузки.

Резюме: Подзаряд конденсатора фильтра происходит два раза в течение всего периода. Максимальное обратное напряжение, прикладываемое к диоду равно удвоенной амплитуде напряжения на обмотке VA1, VA2.

Расчет емкости конденсатора при заданном уровне пульсаций напряжения на выходе мостового выпрямителя с конденсатором фильтра

Напряжение на входе и выходе мостового выпрямителя имеет вид, представленный на рисунке RECT.13 [Источники вторичного электропитания с бестрансформаторным входом. Бас А.А., Миловзоров В.П., Мусолин А.К. М.: Радио и Связь, 1987. 160 с.]. Там же представлены формы импульсов тока через диоды и тока нагрузки.

Видно, что энергия, запасаемая в конденсаторе фильтра передается в нагрузку в течение времени:

Формула

θ – угол в радианах (часть периода) в течение которого осуществляется заряд конденсатора.

Количество переданной энергии равно:

Формула

P – мощность, потребляемая нагрузкой.

С другой стороны, количество переданной энергии также равно:

Формула

VC_max – максимальное напряжение на конденсаторе фильтра;

ΔVС – абсолютные значения пульсаций напряжения на конденсаторе фильтра;

Cf – емкость конденсатора фильтра.

Приравнивая эти выражения для количества переданной энергии получим:

Формула

Формула

То можно выразить емкость конденсатора, обеспечивающую заданный уровень пульсаций:

Формула

или в другом виде:

Формула

При малом уровне пульсаций можно полагать, что:

Формула

Iload_rms – среднеквадратичное значение тока нагрузки;

Vout_ rms – среднеквадратичное значение напряжения на нагрузке.

Формула

Или сокращая множители в числителе и знаменателе получаем выражения для расчета емкости конденсатора фильтра Сf обеспечивающий заданный уровень пульсаций ΔVС (при условии синусоидальной форме напряжения):

Формула

VC_max – максимальное напряжение на конденсаторе фильтра;

ΔVС – абсолютные значения пульсаций напряжения на конденсаторе фильтра;

Iload_rms – действующее (среднеквадратичное) значение тока нагрузки;

Здесь максимальное напряжение на конденсаторе фильтра VC_max меньше амплитуды входного переменного напряжения VA на величину падения напряжения на выпрямителе Vrect:

Формула

Соотношения для расчета емкости конденсатора для двухполупериодного выпрямителя со средней точкой с конденсатором фильтра аналогично.

Расчет амплитуды импульсов тока при заданном уровне пульсаций напряжения на выходе мостового выпрямителя с конденсатором фильтра

Оценим амплитуду импульсов тока через диоды мостового выпрямителя.

Длительность импульса тока Δtθ составляет:

Формула Формула

Принимаем, что амплитуда пульсаций тока незначительна и ток через нагрузку можем считать постоянным и равным среднему току нагрузки Iload_avg, тогда заряд, протекающий через нагрузку в течение половины периода равен:

Формула

Форма импульсов тока через выпрямительные диоды хорошо аппроксимируется треугольником с высотой равной амплитудному значению тока IVD_max и шириной основания равной длительности Δtθ . Тогда заряд, протекающий через диоды за полупериод равен:

Формула

Из равенства электрического заряда проходящего через диоды полумоста QVD и заряда проходящего через нагрузку Qload в течение полупериода следует соотношение:

Формула

Откуда следует выражение для определения амплитуды импульсов тока:

Формула

Подставляя в которое выражение для длительности импульса тока Δtθ получаем:

Формула Формула Формула

VC_max – максимальное напряжение на конденсаторе фильтра;

ΔVС – абсолютные значения пульсаций напряжения на конденсаторе фильтра;

Iload_avg – среднее значение тока нагрузки;

Расчет по данным соотношениям имеет погрешность порядка 20-30 % (но в большую сторону, то есть с запасом).

Соотношения для расчета пульсаций напряжения на выходе двухполупериодного выпрямителя со средней точкой с конденсатором фильтра аналогично.

28. Однофазный выпрямитель со средней точкой.

Выпрямителем называют устройство, преобразующее переменное напряжение в постоянное напряжение.

— по количеству фаз на однофазные, трехфазные и многофазные;

— по схемному решению на выпрямители с нулевой (средней) точкой и мостовые;

— по мощности на выпрямители малой, средней и большой мощности, хотя последнее разделение весьма условно.

Рисунок 11.2 — Однофазный выпрямитель со средней точкой

Выпрямитель состоит из трансформатора, вторичная обмотка которого имеет среднюю точку. В результате формируются два напряжения и , сдвинутые по фазе на . Напряжения на секциях вторичной обмотки трансформатора имеем

где — действующее напряжение на одной секции вторичной обмотки трансформатора.

Рассмотрим работу выпрямителя по временной диаграмме (рисунок 11.3).

Рисунок 11.3 — Временная диаграмма работы однофазного выпрямителя

со средней точкой

На интервале (0-1) открыт диод VD1, и напряжение подключается к нагрузке, в точке (1) диод закрывается, т.к. напряжение, приложенное к нему, равно нулю. На интервале (1-2) открыт диод VD2, и напряжение подключается к нагрузке. На нагрузке формируется напряжение , состоящее из двух положительных полупериодов, среднее значение которого определяется выражением

Выпрямленное напряжение содержит ряд гармонических составляющих, амплитуды которых можно определить из разложения в ряд Фурье

Качество выпрямления оценивается коэффициентом пульсации как отношение первой гармонической составляющей к среднему значению выпрямленного напряжения

где m-число пульсов напряжения в течение периода, в данном случае m=2.

Ток через нагрузку равен сумме токов и , проходящих через каждый диод, при чисто активной нагрузке форма тока и напряжения совпадают.

Среднее значение токов нагрузки , токов диодов и находится по известному сопротивлению нагрузки .

Обратное напряжение на аноде диода равно сумме напряжений и принимает максимальное значение

При расчете этой схемы диод выбирается по среднему значению тока через диод, проверяется по допустимому обратному напряжению.

29. Управляемый выпрямитель со средней точкой и с активной нагрузкой.

Выпрямителем называют устройство, преобразующее переменное напряжение в постоянное напряжение.

— по количеству фаз на однофазные, трехфазные и многофазные;

— по схемному решению на выпрямители с нулевой (средней) точкой и мостовые;

— по мощности на выпрямители малой, средней и большой мощности, хотя последнее разделение весьма условно.

Схема состоит из трансформатора, вторичная обмотка которого имеет среднюю точку; 2-х тиристоров, момент открытия которых определяется управляющими импульсами, который может быть сдвинут относительно начала синусоиды напряжения на угол управления.

Ключ S1 замкнут, а S2 разомкнут, выпрямитель работает на активную нагрузку. В интервале 0: «+»-ное напряжение приложено к тиристору VT1, а к VT2 «-»-ное. Интервал 0-1: VT1 закрыт из-за то, что с системы управления не поступает импульс на управляющий электрод. Точка 2: на VT1 подается управляющий импульс и тиристор VT1 открывается. Интервал 1-2: через тиристор и нагрузку начинает протекать ток id=Ud/RH, равный току тиристора. Тиристор VT1 будет находиться в проводящем состоянии до тех пор, пока напряжение, приложенное к нему, не пройдет через нуль и не изменит свою полярность. Начиная с точки 2, оба тиристора находятся в закрытом состоянии и напряжение Ud=0. Точка 3: управляющий импульс поступает на управляющий электрод тиристора VT2 и открывает его и через нагрузку течет ток, равный току тиристора VT2.

Изменение анодного напряжения Ua1. Интервал 0-1: к тиристору VT1 приложено напряжение U21; на интервале 1-2: тиристор открыт, напряжение на нем близко к нулю, а затем приложено напряжение U21, которое на интервале 2-3 становится отрицательным. На интервале 3-4: тиристор VT2 открывается, к аноду тиристора VT1 будет приложена сумма напряжений U21 и U22. Обратное напряжение достигает значения 2Um.

, при α=0. (интервал у интеграла от π до α).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *