Что такое остов в электрической машине
Перейти к содержимому

Что такое остов в электрической машине

  • автор:

§87. Устройство синхронной машины

Конструктивная схема машины. В зависимости от расположения якоря синхронные машины выполняют с неподвижным или вращающимся якорем. Машины большой и средней мощности (рис. 285) выполняют с неподвижным якорем для удобства отвода электрической энергии от обмотки якоря или ее подвода к ней. Поскольку мощность возбуждения невелика, подвод постоянного тока к расположенной на роторе обмотке возбуждения с помощью двух колец не вызывает особых затруднений. В синхронных машинах с неподвижным якорем якорь 3 выполнен так же, как и статор асинхронной машины. На нем имеются пазы, в которых уложена трехфазная обмотка. Сердечник якоря запрессован в остов 2, для крепления машины на остове имеются лапы 6. Возможно также крепление с помощью фланца или другими способами. На валу ротора 4 установлен вентилятор 5, обеспечивающий охлаждение машины. Возбуждение синхронной машины осуществляется в данном случае от возбудителя 1.

Конструкция ротора. В машинах с неподвижным якорем применяют две различные конструкции ротора: явнополюсную (рис. 286, а) и неявнополюсную (рис. 286,б). Явнополюсный (с явновыраженными полюсами) ротор обычно используют в машинах с четырьмя и большим числом полюсов. Обмотку возбуждения выполняют в этом случае в виде цилиндрических катушек 2 прямоугольного сечения, которые размещают на сердечниках 3 полюсов и укрепляют полюсными наконечниками 1.Ротор, сердечники полюсов и полюсные наконечники изготовляют из листовой

Рис. 285. Общий вид синхронной машины с возбудителем

Рис. 285. Общий вид синхронной машины с возбудителем

Рис. 286. Расположение обмотки возбуждения на роторе синхронной явнополюсной (а) и неявнополюсной (б) машины

Рис. 286. Расположение обмотки возбуждения на роторе синхронной явнополюсной (а) и неявнополюсной (б) машины

стали. Двухполюсные и четырехполюсные машины большой мощности, работающие при частоте вращения ротора 1500 и 3000 об/мин, выполняют, как правило, с неявнополюсным ротором. Применение в них явнополюсного ротора невозможно, так как не обеспечивается необходимая механическая прочность крепления полюсов и обмотки возбуждения. Обмотка возбуждения 2 в такой машине размещается в пазах сердечника 5 ротора, изготовленного из массивной стальной поковки, и укрепляется в них немагнитными металлическими клиньями. Лобовые части обмотки, на которые воздействуют значительные центробежные силы, крепят стальными массивными бандажами. Примерно 1/3 каждого полюсного деления ротора не имеет пазов; эти части образуют так называемые «большие зубцы» 4, через которые входит и выходит поток возбуждения.

По своему назначению синхронные машины подразделяют на турбогенераторы, гидрогенераторы, дизель-генераторы и синхронные двигатели. Назначение машины в значительной степени определяет и ее конструкцию. Турбогенераторы, приводимые во вращение быстроходными паровыми или газовыми турбинами, выполняют неявнополюсными. Для получения стандартной частоты 50 Гц они должны иметь при двух полюсах частоту вращения 3000 об/мин, а при четырех полюсах—1500 об/мин. Гидрогенераторы приводятся во вращение тихоходными турбинами, частота вращения которых составляет несколько десятков или сотен оборотов в минуту, поэтому они выполняются с большим числом полюсов (16—96) и имеют явнополюсные роторы. Дизель-генераторы, работающие от двигателей внутреннего сгорания, и синхронные двигатели небольшой и средней мощности выполняют обычно явнополюсными, мощные же двигатели — неявнополюсными.

Дизель-генераторы и синхронные двигатели выполняют, как правило, с горизонтальным расположением вала (рис. 287, а). В дизель-генераторе обычно имеется один подшипник; в качестве второй опоры ротора используется подшипник самого дизеля, вал которого жестко соединяется с валом ротора генератора. В синхронных машинах с явнополюсным ротором в полюсных наконечниках (рис. 287, 6) размещаются стержни беличьей клетки, выполненной из меди или латуни. С торцовых сторон ротора стержни соединяются с короткозамыкающими кольцами. В генераторах эту клетку называют демпферной обмоткой; она обеспечивает

Рис. 287. Роторы дизель-генератора: 1 — вал; 2 — обмотка возбуждения; 3 — полюс ротора; 4 — стержни беличьей клетки; 5 — короткозамыкающие кольца

Рис. 287. Роторы дизель-генератора: 1 — вал; 2 — обмотка возбуждения; 3 — полюс ротора; 4 — стержни беличьей клетки; 5 — короткозамыкающие кольца

быстрое затухание колебаний ротора, возникающих при резких изменениях режима работы машины. В синхронных двигателях беличья клетка служит в качестве пусковой обмотки.

Технология

Обучающий ключ ВАЗ Автомобили ЛАДА Калина, Приора, Гранта, Датсун и Шевроле Нива комплектуются обучающим ключом с красной меткой. Основное назначение такого ключа — перевод автомобильной… Подробнее » Что такое мастер ключ для автомобиля

Что такое лямбда в оптике

  • автор: admin
  • 27.09.2023

Что такое лямбда в оптике Региональные представители: Глава№1 – CWDM для «чайников» 1.То, что CWDM это грубое оптическое уплотнение, пожалуй знают все. 2. Модули CWDM,… Подробнее » Что такое лямбда в оптике

Что такое нейтрализатор ржавчины и для чего нужен

  • автор: admin
  • 27.09.2023

НЕЙТРАЛИЗАТОРЫ РЖАВЧИНЫ: ИЗБАВЛЯЕМСЯ ОТ КОРРОЗИИ ПРАВИЛЬНО Такое популярное средство борьбы с «рыжей болезнью» металла как нейтрализатор ржавчины известно достаточно давно. Его чаще всего используют для… Подробнее » Что такое нейтрализатор ржавчины и для чего нужен

Что такое муфта в автомобиле

  • автор: admin
  • 27.09.2023

Не очень полный привод: муфта или дифференциал? Полноприводных машин сейчас много, даже очень много. И причина засилья полного привода не только в растущей доле кроссоверов… Подробнее » Что такое муфта в автомобиле

Что такое конденсат в машине

  • автор: admin
  • 27.09.2023

Что такое конденсат в машине Главная → Ваш Дикон → Блог → Как избавиться от конденсата в машине По сравнению со соскабливанием льда с лобового… Подробнее » Что такое конденсат в машине

В чём разница между остовом электрической машины, статором и станиной электрической машины?

Остов — каркас всей конструкции. Статор — неподвижная часть самой машины. Станина — часть на которой устанавливается остов с машиной, опорная часть.

Остальные ответы

Когда узнаешь что означает каждый из этих терминов, тогда и поймешь разницу.

Станина и остов обычно называются корпусом.

Похожие вопросы

Ваш браузер устарел

Мы постоянно добавляем новый функционал в основной интерфейс проекта. К сожалению, старые браузеры не в состоянии качественно работать с современными программными продуктами. Для корректной работы используйте последние версии браузеров Chrome, Mozilla Firefox, Opera, Microsoft Edge или установите браузер Atom.

§76. Асинхронный двигатель с короткозамкнутым ротором

Асинхронный двигатель с короткозамкнутым ротором (рис. 249 и 250) состоит из следующих основных частей: статор с трехфазной обмоткой, ротор с короткозамкнутой обмоткой и остов. Обмотка ротора выполнена бесконтактной (она не соединена ни с какой внешней цепью), что определяет высокую надежность такого двигателя.

Магнитная система. Асинхронная машина в отличие от машины постоянного тока не имеет явно выраженных полюсов. Такую магнитную систему называют неявнополюсной. Число полюсов в машине определяется числом катушек в обмотке статора и схемой их соединения. В четырехполюсной машине (рис. 251) магнитная система состоит из четырех одинаковых ветвей, по каждой из которых проходит половина магнитного потока Фп одного полюса, в двухполюсной машине таких ветвей две, в шестиполюсной — шесть и т. д. Так как через все элементы магнитной системы проходит переменный магнитный поток, то не только ротор 1, но

Рис. 249. Асинхронный двигатель с короткозамкнутым ротором: 1 — остов; 2 — статор; 3 — ротор; 4 — стержни обмотки ротора; 5 — подшипниковый щит; 6 — вентиляционные лопатки ротора; 7 — вентилятор; 8 — коробка выводов

Рис. 249. Асинхронный двигатель с короткозамкнутым ротором: 1 — остов; 2 — статор; 3 — ротор; 4 — стержни обмотки ротора; 5 — подшипниковый щит; 6 — вентиляционные лопатки ротора; 7 — вентилятор; 8 — коробка выводов

Рис. 250. Электрическая схема асинхронного двигателя с короткозамкнутым ротором (а) и его условное графическое изображение (б): 1 — статор; 2 — ротор

Рис. 250. Электрическая схема асинхронного двигателя с короткозамкнутым ротором (а) и его условное графическое изображение (б): 1 — статор; 2 — ротор

Рис.251. Магнитное поле четырехполюсной асинхронной машины

Рис.251. Магнитное поле четырехполюсной асинхронной машины

Рис. 252. Листы ротора (а) и статора (б)

Рис. 252. Листы ротора (а) и статора (б)

Рис. 253. Пакет собранного статора (а) и статор с обмоткой (б)

Рис. 253. Пакет собранного статора (а) и статор с обмоткой (б)

и статор 2 выполняют из листов электротехнической стали (рис. 252), изолированных один от другого изоляционной лаковой пленкой, окалиной и пр. В результате этого уменьшается вредное действие вихревых токов, возникающих в стали статора и ротора при вращении магнитного поля. Листы статора и ротора имеют пазы открытой, полузакрытой или закрытой формы, в которых располагаются проводники соответствующих обмоток. В статоре чаще всего применяют полузакрытые пазы прямоугольной или овальной формы, в машинах большой мощности — открытые пазы прямоугольной формы.

Сердечник статора 1 (рис. 253, а) запрессовывают в литой остов 3 и укрепляют стопорными винтами. Сердечник ротора напрессовывают на вал ротора, который вращается в шариковых подшипниках, установленных в двух подшипниковых щитах. Воздушный зазор между статором и ротором имеет минимальный размер, допускаемый с точки зрения точности сборки и механической жесткости конструкции. В двигателях малой и средней мощности воздушный зазор обычно составляет несколько десятых миллиметра. Такой зазор обеспечивает уменьшение магнитного сопротивления магнитной цепи машины, а следовательно, и уменьшение намагничивающего тока, требуемого для создания в двигателе магнитного потока. Снижение намагничивающего тока позволяет повысить коэффициент мощности двигателя.

Обмотка статора. Она выполнена в виде ряда катушек из проволоки круглого или прямоугольного сечения. Проводники, находящиеся в пазах, соединяются, образуя ряд катушек 2 (рис. 253,б). Катушки разбивают на одинаковые группы по числу фаз, которые располагают симметрично вдоль окружности статора (рис. 254, а) или ротора. В каждой такой группе все катушки электрически соединяются, образуя одну фазу обмотки, т. е. отдельную электрическую цепь. При больших значениях фазного тока или при необходимости переключения отдельных катушек фазы могут иметь несколько параллельных ветвей. Простейшим элементом обмотки является виток (рис. 254,б), состоящий из двух проводников 1 и 2, размещенных в пазах, находящихся друг от друга на неко-

Рис. 254. Расположение катушек трехфазной обмотки на статоре асинхронного двигателя (а) и виток из двух проводников (б)

Рис. 254. Расположение катушек трехфазной обмотки на статоре асинхронного двигателя (а) и виток из двух проводников (б)

тором расстоянии у. Это расстояние приблизительно равно одному полюсному делению т, под которым понимают длину дуги, соответствующую одному полюсу.

Обычно витки, образованные проводниками, лежащими в одних и тех же пазах, объединяют в одну или две катушки. Иногда их называют секциями. Их укладывают таким образом, что в каждом пазу размещается одна сторона катушки или две стороны — одна над другой. В соответствии с этим различают одно- и двухслойные обмотки. Основным параметром, определяющим распределение обмотки по пазам, является число пазов q на полюс и фазу.

В обмотке статора двухполюсного двигателя (см. рис. 254, а) каждая фаза (А-Х; B-Y; C-Z) состоит из трех катушек, стороны которых расположены в трех смежных пазах, т. е. q = 3. Обычно q > 1, такая обмотка называется распределенной.

Наибольшее распространение получили двухслойные распределенные обмотки. Их секции 1 (рис. 255, а) укладывают в пазы 2 статора в два слоя. Проводники обмотки статора укрепляют в пазах текстолитовыми клиньями 5 (рис. 255,б), которые закладывают у головок зубцов.

Стенки паза покрывают листовым изоляционным материалом 4 (электрокартоном, лакотканью и пр.). Проводники, лежащие в пазах, соединяют друг с другом соответствующим образом с торцовых сторон машины. Соединяющие их провода называют лобовыми частями. Так как лобовые части не принимают участия в индуцировании э. д. с, их выполняют как можно короче.

Отдельные катушки обмотки статора могут соединяться «звездой» или «треугольником». Начала и концы обмоток каждой фазы выводят к шести зажимам двигателя.

Обмотка ротора. Обмотка ротора выполнена в виде беличьей клетки (рис. 256,а). Она сделана из медных или алюминиевых стержней, замкнутых накоротко с торцов двумя кольцами (рис. 256,б). Стержни этой обмотки вставляют в пазы ротора без какой-либо изоляции, так как напряжение в короткозамкну-

Рис. 255. Двухслойная обмотка статора асинхронного двигателя: 1 — секция; 2 — паз; 3 — проводник; 4 — изоляционный материал; 5 — клин; 6 — зубец

Рис. 255. Двухслойная обмотка статора асинхронного двигателя: 1 — секция; 2 — паз; 3 — проводник; 4 — изоляционный материал; 5 — клин; 6 — зубец

Рис. 256. Короткозамкнутый ротор: а — беличья клетка; б — ротор с беличьей клеткой из стержней; в — ротор с литой беличьей клеткой; 1 — короткозамыкающие кольца; 2— стержни; 3— вал; 4 — сердечник ротора; 5 — вентиляционные лопасти; 6 — стержни литой клетки

Рис. 256. Короткозамкнутый ротор: а — беличья клетка; б — ротор с беличьей клеткой из стержней; в — ротор с литой беличьей клеткой; 1 — короткозамыкающие кольца; 2— стержни; 3— вал; 4 — сердечник ротора; 5 — вентиляционные лопасти; 6 — стержни литой клетки

той обмотке ротора равно нулю. Пазы короткозамкнутого ротора обычно выполняют полузакрытыми, а в машинах малой мощности — закрытыми (паз имеет стальной ободок, отделяющий его от воздушного зазора). Такая форма паза позволяет хорошо укрепить проводники обмотки ротора, хотя и несколько увеличивает ее индуктивное сопротивление.

В двигателях мощностью до 100 кВт стержни беличьей клетки обычно получают путем заливки расплавленного алюминия в пазы сердечника ротора (рис. 256, в). Вместе со стержнями беличьей клетки отливают и соединяющие их торцовые короткозамыкающие кольца.

Для этой цели пригоден алюминий, так как он обладает малой плотностью, достаточно высокой электропроводностью и легко плавится.

Обычно двигатели имеют вентиляторы, насаженные на вал ротора. Они осуществляют принудительную вентиляцию нагретых частей машины (обмоток и стали статора и ротора), позволяя получить от двигателя большую мощность. В двигателях с короткозамкнутым ротором лопасти вентилятора часто отливают совместно с боковыми кольцами беличьей клетки (см. рис. 256, в).

Асинхронные двигатели с короткозамкнутым ротором просты по конструкции, надежны в эксплуатации. Их широко применяют для привода металлообрабатывающих станков и других устройств, которые начинают работать без нагрузки. Однако сравнительно малый пусковой момент у этих двигателей и большой пусковой ток не позволяют использовать их для привода таких машин и механизмов, которые должны пускаться в ход сразу под большой нагрузкой (с большим пусковым моментом). К таким машинам относятся грузоподъемные устройства, компрессоры и др.

Увеличить пусковой момент и уменьшить пусковой ток можно при выполнении беличьей клетки с повышенным активным сопротивлением. При этом двигатель будет иметь увеличенное скольжение и большие потери мощности в обмотке ротора. Такие двигатели называют двигателями с повышенным скольжением (обозначаются АС). Их можно использовать для привода машин, работающих сравнительно небольшое время. На э. п. с. переменного тока эти двигатели (со скольжением до 10%) применяют для привода компрессоров, которые работают периодически в течение коротких промежутков времени при уменьшении давления в воздушных резервуарах ниже определенного предела.

Двигатели с повышенным пусковым моментом. Короткозамкнутые асинхронные двигатели с повышенным пусковым моментом имеют специальную конструкцию ротора (обозначаются АП). К ним относятся двигатели с двойной беличьей клеткой и двигатели с глубокими пазами.

Ротор 3 (рис. 257,а) двигателя с двойной беличьей клеткой имеет две короткозамкнутые обмотки. Наружная клетка 1 является пусковой. Она обладает большим активным и малым реактивным сопротивлениями. Внутренняя клетка 2 является основной обмоткой ротора; она, наоборот, обладает незначительным активным и большим реактивным сопротивлениями. В начальный момент пуска ток проходит, главным образом, по наружной клетке, которая создает значительный вращающий момент. По мере увеличения частоты вращения ток переходит во внутреннюю клетку, и по окончании процесса пуска машина работает как обычный короткозамкнутый двигатель с одной (внутренней) клеткой. Вытеснение тока в наружную клетку в начальный момент пуска объясняется действием, э. д. с. самоиндукции, индуцируемой в проводниках ротора. Чем ниже расположен в пазу проводник, тем большим магнитным потоком рассеяния 6 он охватывается и тем большая э. д. с. самоиндукции в нем индуцируется (рис. 257, в), следовательно, тем большее он будет иметь индуктивное сопротивление.

Вытеснение тока в верхние проводники ротора сильно сказывается при неподвижном роторе, когда частота тока, индуцируемого в обеих клетках ротора, велика. При этом индуктивные

Конструкция роторов асинхронных двигателей с повышенным пусковым моментом Рис. 257. Конструкция роторов асинхронных двигателей с повышенным пусковым моментом: с двойной беличьей клеткой (а), с глубокими пазами (б) и разрезы их пазов (в и г)Рис. 257. Конструкция роторов асинхронных двигателей с повышенным пусковым моментом: с двойной беличьей клеткой (а), с глубокими пазами (б) и разрезы их пазов (в и г)

сопротивления обеих клеток значительно больше активных и ток распределяется между ними обратно пропорционально их индуктивным сопротивлениям, т. е. проходит в основном по наружной клетке с большим активным сопротивлением. По мере возрастания частоты вращения ротора частота тока в нем будет уменьшаться (вращающееся магнитное поле будут пересекать проводники ротора с меньшей частотой), и ток начнет проходить по обеим клеткам в соответствии с их активными сопротивлениями, т. е., главным образом, через внутреннюю клетку.

Таким образом, процесс пуска двигателя с двойной беличьей клеткой имеет сходство с процессом пуска асинхронного двигателя с фазным ротором, когда в начале пуска в цепь обмотки ротора вводится добавочное активное сопротивление (пусковой реостат), а по мере разгона это сопротивление выводится. Точно так же и в рассматриваемом двигателе ток в начале пуска проходит по наружной клетке с большим активным сопротивлением, а затем по мере разгона постепенно переходит во внутреннюю клетку с малым активным сопротивлением.

Для повышения активного сопротивления пусковой клетки стержни ее изготовляют из маргацовистой латуни или бронзы. Стержни рабочей клетки выполняют из меди, обладающей малым удельным сопротивлением, причем площадь поперечного сечения их больше, чем у пусковой клетки. В результате этого активное сопротивление пусковой клетки увеличивается в 4—5 раз по сравнению с рабочей. Между стержнями обеих клеток имеется узкая щель 5, размеры которой определяют индуктивность рабочей клетки. Двухклеточный двигатель на 20—30% дороже коротко-замкнутого двигателя обычной конструкции. Для упрощения технологии изготовления ротора двухклеточные двигатели небольшой и средней мощности выполняют с литой алюминиевой клеткой.

Действие двигателей с глубокими пазами (рис. 257, б) также основано на использовании явления вытеснения тока. В этих двигателях стержни 4 беличьей клетки выполнены в виде узких медных шин, заложенных в глубокие пазы ротора 3 (высота паза в 10— 12 раз больше его ширины). Нижние слои стержней, расположенные дальше от поверхности ротора, охватываются значительно большим числом магнитных линий потока рассеяния 6, чем верхние (рис. 257,г), поэтому они имеют во много раз большую индуктивность. В начале пуска в результате увеличенного индуктивного сопротивления нижних частей стержней ток проходит, главным образом, по их верхним частям. При этом используется только небольшая часть поперечного сечения каждого стержня, что приводит к увеличению его активного сопротивления, а следовательно, и к возрастанию активного сопротивления всей обмотки ротора.

При увеличении частоты вращения ротора вытеснение тока в верхние части стержней уменьшается (по той же причине, что и в двигателе с двойной беличьей клеткой), и после окончания пуска ток равномерно распределяется по площади их поперечного сечения.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *