Опыт эрстеда доказал что
Перейти к содержимому

Опыт эрстеда доказал что

  • автор:

Ответ на Проверь себя №2, Параграф 62 из ГДЗ по Физике 8 класс: Пёрышкин А.В.

ГДЗ (готовое домашние задание из решебника) по Физике 8 класса авторов А. В. Перышкин. — М. : Дрофа, 2013-2017 на Проверь себя №2, § 62. Действие магнитного поля на проводник с током. Электрический двигатель.

Издание: Физика. 8 класс. : белый учебник для общеобразовательных учреждений / А. В. Перышкин. — М. : Дрофа, 2013-2017г.

Условие

Опыт эрстеда доказал что
А. Вокруг проводника с током существует магнитное поле
Б. Вокруг проводника с током не существует магнитного поля
В. Проводник с током взаимодействует с магнитной стрелкой
Г. Два параллельных проводника с током взаимодействуют друг с другом

Решение №1

Фото решения 1: Проверь себя №2, Параграф 62 из ГДЗ по Физике 8 класс: Пёрышкин А.В. г.

Подробное решение

Фото подробного решения: Проверь себя №2, Параграф 62 из ГДЗ по Физике 8 класс: Пёрышкин А.В.

  • Белый фон переписывать в тетрадь
  • Цветной фон теория и пояснения

Опыт Эрстеда

С начала XIX века электричество и магнетизм стали восприниматься как две абсолютно независимые друг от друга силы. То есть, конечно, и электричество, и магнетизм сильны, обоим им свойственны отталкивание и притяжение, действие обеих сил слабеет по мере увеличения расстояния обратно пропорционально его квадрату. Однако магнетизм действовал только на железо и (в небольшой степени) на некоторые другие вещества, в то время как электричество казалось всепроникающим в своих проявлениях. Магнетизм проявлял полюса только в парах, а в электричестве они обнаруживались по отдельности; и не существовало никакого магнитного тока, подобного электрическому. Различий обнаруживалось больше, чем сходств.

Однако в 1819 году в результате простого эксперимента, который провел в ходе лекции (без какого-либо ожидания великих последствий) датский физик Ханс Кристиан Эрстед, было совершено важное открытие. Он использовал в ходе лекции сильную батарею и приблизил проволоку, по которой был пропущен ток, к компасу таким образом, что эта проволока была параллельна линии север — юг и соответственно стрелке компаса. (Сейчас неясно, что именно ученый пытался доказать с помощью своих действий.)

Так или иначе, когда Эрстед положил проволоку поверх стрелки компаса, стрелка резко повернулась и благодаря току, идущему по проволоке, стала показывать направление восток — запад. Физик был крайне удивлен, но пошел еще дальше и пустил электрический ток в обратном направлении, присоединив проволоку к электродам в обратной последовательности. Теперь стрелка компаса снова резко повернулась, но в обратную сторону.

Как только Эрстед объявил о своем открытии, физики всей Европы начали проводить дальнейшие опыты, и вскоре стало ясно, что электрические и магнитные явления тесно связаны, то есть теперь нужно было говорить уже об электромагнетизме.

Французский физик Доминик Франсуа Жан Араго почти сразу показал, что проволока с электрическим током не только притягивала намагниченную стрелку, но и размагничивала железные опилки, так же как и прямо направленный магнит. Магнитная сила, неразличимая в обычных магнитах, проявилась в действии электрического тока. Несомненно, поток электрического тока является магнитом.

Чтобы показать это более наглядно, можно было воспользоваться железом, как намагниченным, так и ненамагниченным. Если два магнита притягивались друг к другу или отталкивались (это зависит от того, как были расположены их поля), то же самое должно было быть справедливым и для двух проводов, каждый из которых нес электрический заряд.

Это было продемонстрировано в 1820 году французским физиком Ампером, в честь которого названа единица измерения силы тока. Ампер начал свой опыт с двух параллельных проводов, каждый из которых был подсоединен к отдельной батарее. Один провод был закреплен, а второй свободно двигался по направлению к первому или от него. Когда ток шел в одном и том же направлении по обеим проволокам, подвижная проволока придвигалась к закрепленной, что позволяло говорить о явлении притяжения между носителями тока. Если ток двигался в противоположном направлении, то подвижная проволока отодвигалась, демонстрируя явление отталкивания. Далее, когда Ампер закреплял носители тока таким образом, что подвижная проволока могла свободно вращаться, то в тех случаях, когда ток проходил по проволокам в противоположных направлениях, она поворачивалась на 180°, пока ток не двигался снова в одном и том же направлении по обеим проволокам. (Так же как и маленький магнит, северный полюс которого поднесен к северному полюсу второго, будет поворачиваться, стремясь соединиться с южным полюсом второго магнита.)

Кроме того, если текущий ток является магнитом, он должен обнаруживать силовые магнитные линии, так же как и обычный магнит, и эти силовые линии должны увлекать за собой стрелку компаса. Поскольку стрелке компаса свойственно поворачиваться в направлении, перпендикулярном течению тока по проволоке (независимо от того, держат ли проволоку над компасом, под ним или сбоку), магнитные силовые линии проволоки с током появляются в форме концентрических цилиндров около этой проволоки. Сделав поперечное сечение проволоки, можно увидеть силовые линии в форме концентрических окружностей. Это можно продемонстрировать с помощью проволоки с током, проходящей вверх сквозь маленькую дырочку в положенном горизонтально куске картона. Если рассыпать железные опилки по картону, то они расположатся кругами вокруг проволоки.

В случае с обычным магнитом принято считать, что силовые линии имеют направление — от северного полюса к южному. Поскольку северный полюс стрелки компаса всегда указывает на южный полюс магнита, она всегда указывает в условно принятом направлении силовых линий, а также показывает направление силовых линий находящейся рядом проволоки с током, что позволяет выяснить направление тока.

Ампер принял допущение Франклина о течении тока от позитивного электрода к негативному. Если проволока была направлена таким образом, что, в терминах этого допущения, ток шел бы непосредственно по направлению к наблюдателю, то силовые линии, исследованные при помощи стрелки компаса, двигались бы вокруг проволоки по часовой стрелке.

Чтобы легче было запомнить, Ампер разработал то, что позже будет названо «правилом правой руки». Представьте, что вы держите проволоку с током в правой руке; обхватите ее кистью руки, при этом большой палец будет параллелен проволоке и укажет направление течения тока. Обхватывающие ее пальцы, от ладони к кончикам ногтей, будут показывать направление магнитных силовых линий.

(Вполне возможно определить вместо условного направления тока направление потока электронов. Этот поток движется противоположно течению тока, поэтому если вы будете использовать тот же способ, то придется задействовать левую руку, которой нужно обхватить проволоку. При этом большой палец укажет направление потока электронов, а пальцы — направление силовых линий.)

Проволока с идущим по ней током, так же как и магнит, может принимать самые различные формы, не обязательно прямого прута. Например, из проволоки можно сделать петлю. В таком случае силовые линии, находящиеся снаружи петли, проходят далеко друг от друга, а находящиеся внутри ее скучены вместе. Следовательно, магнитное поле внутри петли сильнее, чем снаружи.

Теперь представьте, что проволока скручена не в одну петлю, а в несколько и напоминает диванную пружину. Такая форма называется спираль, или соленоид (от греческого, означающего «в форме трубы»). В таком соленоиде силовые линии каждой петли будут усиливать соседние линии, а результирующая сила будет охватывать внешнюю часть спирали от начала до конца. Затем силовые линии перейдут на внутреннюю часть соленоида, чтобы вернуться к его началу. Чем больше отдельных петель или витков содержит соленоид, тем сильнее поле и тем больше линий сконцентрировано внутри спирали. Если витки расположены близко друг к другу, то сила поля еще увеличивается, а внутри соленоида еще более усиливается магнитный поток.

Иначе говоря, поток внутри соленоида изменяется прямо пропорционально количеству витков (N) и обратно пропорционально длине проволоки (L). Следовательно, он изменяется прямо пропорционально N/L. Сила магнитного поля, созданного электрическим током, зависит также от силы тока. Ток в 2 ампера произведет на заданном расстоянии от проволоки магнитное поле, которое будет в 2 раза сильнее, чем поле, произведенное током в 1 ампер в тех же условиях. В случае с соленоидом мы получим следующее отношение для магнитного поля, которое практически одинаково во всей его внутренней части:

H = 1,25NI/L, (Уравнение 12.1)

где H — это сила магнитного поля в эрстедах; I — сила тока в амперах; N — количество витков в соленоиде; L — длина спирали в сантиметрах.

Отношение между силой магнитного поля и силой тока дает возможность определить ампер через магнитную силу. Если в двух длинных параллельных проводах, расположенных на расстоянии один метр друг от друга, течет постоянный ток одной и той же силы, производящий взаимную силу (притяжения или отталкивания) в 2?10 –7 ньютонов на метр длины, этот ток имеет силу 1 ампер. Таким образом, получается, что ампер можно определить через механические единицы измерения, а остальные единицы электричества могут быть определены через ампер. (Поскольку именно работа Ампера сделала возможным дать такое механическое определение электрической единице, то она и была названа его именем.)

Соленоид ведет себя так, как будто это магнитный брусок, сделанный из воздуха. Это подтверждает предположение о том, что в обычных магнитных брусках происходит то же, что и в проволоке, скрученной петлями, по которой пропущен ток. Однако до XX века оно пребывало не более чем предположением. Лишь после того как существование электрона и его место в атоме уже были хорошо изучены, обычные магнитные явления стали объяснять вращением электронных зарядов внутри атомов. В некоторых случаях электронные вращения внутри атомов могут быть уравновешены, поскольку одни вращаются по часовой стрелке, а другие — против часовой стрелки, так что результирующей магнитной силы наблюдаться не будет. В других случаях, особенно это касается железа, вращения не уравновешены и магнитная сила может стать очевидной, если сами атомы выровнены соответствующим образом.

Таким образом, появляется возможность объяснить магнетизм Земли. Даже если допустить, что жидкое железо Земли имеет температуру выше точки Кюри (см. гл. 9) и не может быть обычным магнитом, тем не менее возможно, что вращение Земли создает в этой жидкой магнитной системе медленное вихревое движение с электрическим зарядом и что ядро Земли ведет себя скорее как соленоид, нежели как магнитный брусок. Эффект получается одинаковый.

Если это так, то планета, не обладающая жидким ядром, в котором могли бы возникнуть завихрения, или вращающаяся недостаточно быстро, чтобы привести вихри в движение, не будет обладать значительным магнитным полем (если вообще будет им обладать). Факты, собранные в результате современных опытов с ракетами, кажется, подтверждают это. Плотность Луны составляет всего 3 /5 от плотности Земли, и это заставляет полагать, что на Луне нет плотного жидкого железного ядра значительного размера, — и исследования Луны ясно показали, что сколь-либо значимого магнитного поля она не имеет.

Венера же, напротив, очень похожа на Землю в отношении размера и плотности, и, вероятно, на этой планете имеется жидкое железное ядро. Однако астрономические данные, полученные в 1960-х годах, показали, что Венера вращается медленнее, приблизительно один раз в 200 с лишним дней. И на Венере тоже, по данным, полученным с «Маринера II» (аппарата-исследователя Венеры), значимое магнитное поле отсутствует.

Юпитер и Сатурн, которые намного больше Земли, тем не менее вращаются быстрее и обладают значительно большими магнитными полями, чем Земля.

Солнце представляет собой сплошь текучую среду, скорее газообразную, чем жидкую, а в результате вращения в его магнитной системе, бесспорно, присутствуют вихри. Возможно, что именно такие вихри объясняют наличие магнитного поля у Солнца, особенно учитывая «пятна» на нем. У некоторых звезд обнаружены гораздо более сильные магнитные поля, чем у Солнца, а что касается галактик, считается, что магнитные поля галактик имеют размеры, сопоставимые с размером самих галактик.

Физика

Первая публикация о свойствах магнита, которую можно считать научной работой, уносит нас в 1269 год, в военный лагерь армии короля Сицилии Карла Анжуйского, осадившей итальянский город Лусеру. Именно оттуда французский философ и естествоиспытатель Пьер де Марикур отправил приятелю в Пикардию документ, который вошел в историю науки как «Письмо о магните».

Рис. 1. Рисунок компаса XIV столетия из книги «Письмо о магните» де Марикура (1269)

Необходимо отметить, что в упомянутый период среди образованной части населения Европы и Востока было очень модно размышлять о вечных двигателях. Исследователи опирались на эффект силы тяжести, под влиянием которой откидывались противовесы на колесах (рис. 2) либо переливалась ртуть в размещенных по периметру колеса сосудах (рис. 3).

Рис. 2. Пример «вечного двигателя» Рис. 3. «Пример вечного двигателя»

Работа самодвижущего устройства Пьера де Марикура основывалась на использовании магнитных сил. Вот почему он уделил столько внимания исследованию магнитов.

Полюса магнита

Марикур указывает, что в каждом куске магнита имеются две области, особенно сильно притягивающие железо.

Рис. 4. Области, особенно сильно притягивающие железо

Он усмотрел параллель между этими зонами и полюсами небесной сферы, и поэтому мы теперь говорим о северном и южном магнитных полюсах.

Если разбить кусок магнита надвое, пишет Марикур, в каждом осколке появляются собственные полюса (рис. 5). То есть невозможно отделить полюса магнита друг от друга.

Рис. 5. Полюса магнита

После появления книгопечатания труд Пьера де Марикура много раз издавался отдельной брошюрой. Его с уважением цитировали многие натуралисты вплоть до XVII столетия.

Вклад У. Гильберта в теорию магнитного поля

С трудами Пьера де Марикура был знаком и английский придворный врач Уильям Гильберт (рис. 6). Как врач ее величества, Гильберт увлекался модным на тот период исследованием весьма сомнительного «омолаживающего эффекта малых порций магнита». Именно по этой причине он и занялся изучением свойств магнитов. Он проделал более 600 опытов в свободное от работы время.

Рис. 6. Уильям Гильберт (1544–1603)

В 1600 году, уникальном в историческом смысле, вышел его труд «О магните, магнитных телах и большом магните – Земле». В этой книге Гильберт не только привел практически все известные сведения о свойствах природных магнитов и намагниченного железа, но и описал собственные опыты, например с шаром из магнетита, с помощью которых он воспроизвел основные черты земного магнетизма. Он обнаружил, что на обоих магнитных полюсах такой «маленькой Земли» компасная стрелка устанавливается перпендикулярно ее поверхности, на экваторе – параллельно, а на средних широтах – в промежуточном положении (рис. 7).

Рис. 7. Расположение магнитной стрелки в разных частях Земли

Тот магнитный полюс стрелки, который притягивается к географическому северному полюсу Земли, назвали северным. Противоположные магнитные полюса притягиваются, поэтому, вблизи географического северного полюса находится магнитный южный полюс.

Так Гильберт смоделировал магнитное наклонение, о существовании которого в Европе знали уже более полувека. Также Гильберт обнаружил, что сильно нагретое железо теряет магнитные свойства, но при охлаждении они восстанавливаются. И наконец, он первым провел четкую границу между притяжением магнетита и притяжением натертого янтаря, которое он назвал электрической силой (от латинского названия янтаря electrum). Он развел «по углам» электричество и магнетизм. Несмотря на то что это был чрезвычайно новаторский труд, по достоинству оцененный и современниками, и потомками, после Гильберта наука о магнетизме вплоть до начала XIX века продвинулась очень мало.

Рис. 8. Шарль Огюстен де Кулон (1736–1806)

В 1785 году известный нам уже Шарль Кулон (рис. 8) посредством прецизионных измерений на крутильных весах показал, что сила взаимодействия магнитных полюсов обратно пропорциональна квадрату расстояния между ними – точно так же, как и сила взаимодействия между электрическими зарядами.

Опыты Эрстеда. Открытие электромагнетизма

Когда будущий автор «Голого короля» и «Дюймовочки» четырнадцатилетним подростком добрался до Копенгагена, он обрел друга и покровителя в лице своего двойного тезки, ординарного профессора физики и химии Копенгагенского университета Ганса Христиана Эрстеда (рис. 9). И оба прославили свою страну на весь мир.

Рис. 9. Ганс Христиан Эрстед (1777–1851)

Многие ученые того периода находились под влиянием философских концепций Шеллинга, которые заключались в том, что все силы в природе возникают из одних и тех же источников. Поэтому Эрстед начиная с 1813 года вполне сознательно пытался установить связь между электричеством и магнетизмом. Это удалось сделать весной 1820 года, во время очередной лекции по электричеству.

Рис. 10. Опыт Эрстеда, проведенный в 1820 г.

Эрстед на лекции демонстрировал нагрев проволоки электричеством от вольтова столба, для чего составил электрическую цепь. На демонстрационном столе случайно находился морской компас, поверх стеклянной крышки которого проходил один из проводов. Вдруг кто-то из студентов присутствующих на лекции случайно заметил, что, когда Эрстед замкнул цепь, магнитная стрелка компаса отклонилась в сторону. Начались исследования обнаруженного феномена. Для начала Эрстед повторил условия своего лекционного опыта.

Опыты Эрстеда

1. Магнитные стрелки располагаются на подставке с иглой и могут свободно вращаться. В свободном состоянии они ориентируются по меридиану Земли, однако, поскольку все они обладают магнитными свойствами, они влияют друг на друга и ориентированы хаотично. Между стрелками расположим проводник из немагнитного материала (медь, алюминий). Проводник соединим через ключ с источником постоянного тока. Пока цепь разомкнута и в проводнике нет тока, стрелки не реагируют на присутствие провода. При замыкании цепи стрелки стремятся развернуться таким образом, чтобы быть ориентированными по касательной к окружности, центром которой является проводник (рис. 11).

Рис. 11. Опыт Эрстеда

Изменим полярность подключения провода. При смене направления тока в проводнике мы увидим, что стрелки опять стремятся развернуться таким образом, чтобы быть ориентированными по касательной к окружности, центром которой является проводник, но при этом их полюса меняются местами.

2. Далее Эрстед проверяет действие проводников из различных металлов на стрелку. Для этого берутся проволоки из платины, золота, серебра, латуни, свинца, железа. Оказывается, что металлы, которые никогда не обнаруживали магнитных свойств, приобретают их, когда через них протекает электрический ток.

3. Когда Эрстед ставил провод вертикально, то магнитная стрелка совсем не указывала на него, а располагалась как бы по касательной к окружности, центром которой является проводник. При этом стрелки, которые находились в диаметрально противоположных точках окружности, были ориентированы противоположно друг другу (рис. 12).

Рис. 12. Магнитное поле проводника с током

Это натолкнуло Эрстеда на идею о том, что действие проводника с током на магнитные стрелки носит вихревой характер, так как именно вихрям свойственно действовать в противоположных направлениях на двух концах одного диаметра.

Из опытов Эрстеда вытекают следующие выводы:

  1. Электричество и магнетизм тесно связаны друг с другом.
  2. Электрический ток оказывает магнитное действие.
  3. Вокруг проводника с током возникают магнитные силы, или, говоря современным языком, возникает магнитное поле.
  4. Магнитное поле вокруг проводника с током носит вихревой характер.

Опыт Эрстеда доказывал не только связь между электричеством и магнетизмом. Электрические и магнитные силы больше не рассматривались по отдельности, а были объединены так называемыми электромагнитными явлениями.

Список литературы

  1. Соколович Ю. А., Богданова Г. С. Физика: справочник с примерами решения задач. – 2-е издание, передел. – X.: Веста: издательство «Ранок», 2005. – 464 с.
  2. Мякишев Г. Я., Буховцев Б. Б., Чаругин В. М. Физика 11 кл.: учебник для общеобразовательных учреждений. – 23-е изд. – М.: Просвещение, 2014. – 400 с.
  3. Кудрявцев П. С. Курс истории физики. Учеб. пособие для студентов физ.-мат. фак. пед. ин-тов. – М.: Просвещение, 1974.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Интернет-портал «class-fizika.narod.ru» (Источник)
  2. Интернет-портал «eduspb.com» (Источник)
  3. Интернет-портал «electrono.ru» (Источник)

Домашнее задание

  1. Что мы получим, если магнит разрезать на несколько частей?
  2. Укажите направление линий магнитного поля проводника с током:
  3. Какие выводы можно сделать из проведенных опытов Эрстеда?

Физика

Урок 2: Направление тока и направление линий его магнитного поля

  • Видео
  • Тренажер
  • Теория

Опыт Эрстеда

Продолжительное время электрические и магнитные поля изучались раздельно. Но в 1820 году датский учёный Ханс Кристиан Эрстед во время лекции по физике обнаружил, что магнитная стрелка поворачивается возле проводника с током (см. рис. 1). Это доказало магнитное действие тока. После проведения нескольких экспериментов Эрстед обнаружил, что поворот магнитной стрелки зависел от направления тока в проводнике.

Опыт Эрстеда

Рис. 1. Опыт Эрстеда

Для того чтобы представить, по какому принципу происходит поворот магнитной стрелки вблизи проводника с током, рассмотрим вид с торца проводника (см. рис. 2, ток направлен в рисунок, – из рисунка), возле которого установлены магнитные стрелки. После пропускания тока стрелки выстроятся определённым образом, противоположными полюсами друг к другу. Так как магнитные стрелки выстраиваются по касательным к магнитным линиям, то магнитные линии прямого проводника с током представляют собой окружности, а их направление зависит от направления тока в проводнике.

Расположение магнитных стрелок возле прямого проводника с током

Рис. 2. Расположение магнитных стрелок возле прямого проводника с током

Для более наглядной демонстрации магнитных линий проводника с током можно провести следующий опыт. Если вокруг проводника с током высыпать железные опилки, то через некоторое время опилки, попав в магнитное поле проводника, намагнитятся и расположатся по окружностям, которые охватывают проводник (см. рис. 3).

Расположение железных опилок вокруг проводника с током

Рис. 3. Расположение железных опилок вокруг проводника с током (Источник)

Правило буравчика. Правило правой руки

Для определения направления магнитных линий возле проводника с током существует правило буравчика (правило правого винта) – если вкручивать буравчик по направлению тока в проводнике, то направление вращения ручки буравчика укажет направление линий магнитного поля тока (см. рис. 4).

Правило буравчика

Рис. 4. Правило буравчика (Источник)

Также можно использовать правило правой руки – если направить большой палец правой руки по направлению тока в проводнике, то четыре согнутых пальца укажут направление линий магнитного поля тока (см. рис. 5).

Правило правой руки

Рис. 5. Правило правой руки (Источник)

Оба указанных правила дают один и тот же результат и могут быть использованы для определения направления тока по направлению магнитных линий поля.

Взаимодействие проводников с током в опытах Ампера

После открытия явления возникновения магнитного поля вблизи проводника с током Эрстед разослал результаты своих исследований большинству ведущих учёных Европы. Получив эти данные, французский математик и физик Ампер приступил к своей серии экспериментов и через некоторое время продемонстрировал публике опыт по взаимодействию двух параллельных проводников с током. Ампер установил, что если по двум расположенным параллельно проводникам течёт электрический ток в одну сторону, то такие проводники притягиваются (см. рис. 6б) если ток течёт в противоположные стороны – проводники отталкиваются (см. рис. 6а).

Опыт Ампера

Рис. 6. Опыт Ампера (Источник)

Из своих опытов Ампер сделал следующие выводы:

  1. Вокруг магнита, или проводника, или электрически заряженной движущейся частицы существует магнитное поле.
  2. Магнитное поле действует с некоторой силой на заряженную частицу, движущуюся в этом поле.
  3. Электрический ток представляет собой направленное движение заряженных частиц, поэтому магнитное поле действует на проводник с током.

Задача на применение правила буравчика для прямого проводника с током

На рисунке 7 изображён проволочный прямоугольник, направление тока в котором показано стрелками. Используя правило буравчика, начертить возле сторон прямоугольника по одной магнитной линии, указав стрелкой её направление.

 Иллюстрация к задаче

Рис. 7. Иллюстрация к задаче

Вдоль сторон прямоугольника (проводящей рамки) вкручиваем мнимый буравчик по направлению тока.

Вблизи правой боковой стороны рамки магнитные линии будут выходить из рисунка слева от проводника и входить в плоскость рисунка справа от него. Это обозначается с помощью правила стрелы в виде точки слева от проводника и крестика справа от него (см. рис. 8).

Аналогично определяем направление магнитных линий возле других сторон рамки.

Иллюстрация к задаче

Рис. 8. Иллюстрация к задаче

Образование магнитного поля вблизи катушки с током (соленоида)

Опыт Ампера, в котором вокруг катушки устанавливались магнитные стрелки, показал, что при протекании по катушке тока стрелки к торцам соленоида устанавливались разными полюсами вдоль мнимых линий (см. рис. 9). Это явление показало, что вблизи катушки с током есть магнитное поле, а также что у соленоида есть магнитные полюса. Если изменить направление тока в катушке, магнитные стрелки развернутся.

 Опыт Ампера. Образование магнитного поля вблизи катушки с током

Рис. 9. Опыт Ампера. Образование магнитного поля вблизи катушки с током

Для определения магнитных полюсов катушки с током используется правило правой руки для соленоида (см. рис. 10) – если обхватить соленоид ладонью правой руки, направив четыре пальца по направлению тока в витках, то большой палец покажет направление линий магнитного поля внутри соленоида, то есть на его северный полюс. Это правило позволяет определять направление тока в витках катушки по расположению её магнитных полюсов.

Правило правой руки для соленоида с током

Рис. 10. Правило правой руки для соленоида с током

Задача на применение правила правой руки для соленоида с током

Определите направление тока в катушке и полюсы у источника тока, если при прохождении тока в катушке возникают указанные на рисунке 11 магнитные полюсы.

 Иллюстрация к задаче

Рис. 11. Иллюстрация к задаче

Согласно правилу правой руки для соленоида, обхватим катушку таким образом, чтобы большой палец показывал на её северный полюс. Четыре согнутых пальца укажут на направление тока вниз по проводнику, следовательно, правый полюс источника тока положительный (см. рис. 12).

Иллюстрация к задаче

Рис. 12. Иллюстрация к задаче

Итоги урока

На данном уроке мы рассмотрели явление возникновения магнитного поля вблизи прямого проводника с током и катушки с током (соленоида). Также были изучены правила нахождения магнитных линий данных полей.

Список литературы

  1. А. В. Перышкин, Е. М. Гутник. Физика 9. – Дрофа, 2006.
  2. Г. Н. Степанова. Сборник задач по физике. – М.: Просвещение, 2001.
  3. А. Фадеева. Тесты физика (7 – 11 классы). – М., 2002.
  4. В. Григорьев, Г. Мякишев. Силы в природе. – М.: Наука, 1997.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Интернет-портал «clck.ru» (Источник)
  2. Интернет-портал «class-fizika.narod.ru» (Источник)
  3. Интернет-портал «festival.1september.ru» (Источник)

Домашнее задание

  1. А. В. Перышкин, Е. М. Гутник. Физика 9: § 44, стр. 149, упр. 35 (1–5) (Источник)
  2. Что можно определить, используя правило буравчика?
  3. Что можно определить, используя правило правой руки?
  4. Определить направление тока по известному направлению магнитных линий (см. рис. 13).

    Рис. 13. Иллюстрация к задаче

Видеоурок: Направление тока и направление линий его магнитного поля (Зарицкий А.Н.) по предмету Физика за 9 класс.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *