Расчет параметров нагревателей из нихрома и фехрали
Производственные процессы (такие, как сушка, обжиг) происходят при высоких температурах, составляющих сотни градусов по Цельсию. Нагреватели для технологического оборудования выбираются термостойкие, способные выдерживать многократные процессы изменения температуры, а также поддерживать на регулярной основе высокие термические показатели. В противном случае агрегаты придётся часто останавливать, чтобы заменить вышедшие из строя элементы новыми, что невыгодно по энергетическим и финансовым показателям.
Сырьё для нагревателей
Изначально устанавливают нагреватели из стойких материалов, к которым относятся сплавы.
Токопроводящими элементами ТЭНов выбирают нихром и фехраль. Это ─ сплавы, состоящие из 2-3 компонентов. В первом случае объединили Ni и Cr, а во втором ─ Fe, Al и Cr. Для каждого типа оборудования учитывается диаметр проволоки, напряжение в сети, вырабатываемая мощность, сопротивление на единицу площади.
Как выбрать нужную проволоку? Различают Фехраль стандартный, Суперфехраль, Еврофехраль. Что лучше взять: дорогостоящий нихром или более хрупкий фехраль? Как правильно подобрать параметры резистивного материала для воздушной и жидкостной сред?
Очень удобно, когда есть специальный математический инструмент, в который вводишь необходимые составляющие – и он выдаёт готовый ответ по подбору материала для проволоки, её длины, диаметра, формы (прямая или спиральная). Такой калькулятор уже разработан и представлен ниже.
Расчет длины спирали
Мощность нагревателя
Вт
Напряжение питания
В
В калькуляторе не учтено возрастание сопротивления при повышении температуры. Фактическая мощность будет ниже расчетной.
Расчет веса и длины
Пересчитать
Вид продукции
Диаметр, мм.
Толщина, мм.
Также существуют несколько видов расчётов, которые рассмотрим более подробно.
Методы вычислений и применяемые формулы
Исходными показателями для последующего расчёта характеристик термоэлементов выбираются:
- объём нагреваемого пространства в агрегате;
- граничная температура, используемая для выполнения термического процесса;
- мощность, продуцируемая нагревателем.
Определение длины проволоки
Расчёт по сопротивлению
1. Находим силу тока:
2. Вычисляем значение сопротивления:
3. Узнаём, какой длины нужна проволока (L):
где ρ – удельное сопротивление материала.
4. Затем нужно просчитать число витков и размер одного витка.
Длина витка ( l ) =3,14∙(Ø н.+1/2Øпоп. с.),
где Ø н – это диаметр намотки, а 1/2Øпоп. с. – половинное значение поперечного сечения в проволоке.
5. По таблице проверяем, сможет ли проволока с рассчитанными параметрами выдержать электрическую нагрузку.
При подборе и I, и t˚ выбираются значения приближённые, но округляемые в сторону бόльших значений. При этом получаем минимально допустимые площадь сечения и диаметр нагревателя. При желании допускается использовать проволоку толще, чем получено при расчёте. А вот в меньшую сторону от полученных значений уходить не рекомендуется: возникает потенциальная опасность быстрого перегорания проволоки.
Ещё один полезный нюанс. При размещении резистивного проводника из нихрома в жидкой среде, значение силы тока повышают на 10-50%. Когда нагреватель закрыт, то для толстой проволоки ток снижают на 20%, для тонкой – на половину.
Расчёт температурного значения
Первый способ имеет погрешности, так как значение сопротивления спирали выбирается в холодном состоянии. А при нагреве оно способно менять исходную величину. Там, где используются приборы небольшой мощности, и температура повышается незначительно, можно принимать первый метод, как подходящий. А когда в печах требуется высокая температура, проведенные вышеуказанным методом вычисления нельзя назвать точными. Поэтому стали применять второй метод, более сложный и скрупулёзный.
1. Имея линейные размеры камеры печи, определяем её объём:
V = l x b x h,
Где l, b, h — это соответственно длина, ширина и глубина устройства.
2. Просчитываем мощность термического агрегата. При объёме обжигового устройства до 50 л удельная мощность считается равной 100 Вт/л. Для печей с параметром в 100-500 л аналогичный показатель принимается 50-70 Вт/л.
где Pуд. является удельной мощностью.
2. По полученному числу смотрим, какой должен быть нагреватель. Мощность до 10 кВт допускается для однофазной сети, а когда цифра получается больше, требуется 3-хфазное подключение.
3. Находим силу тока, используя мощность проволоки и напряжение между краями нагревателя:
4. Считаем значение сопротивления:
С однофазной сетью всё понятно, здесь ток протекает по единой схеме и не разделяется на потоки.
Трёхфазная сеть
На производстве всегда задействовано множество потребителей тока, поэтому напряжение в сети достигает 380 В. Все три фазы получают равномерную нагрузку, в связи с чем мощность нагревателей будет равной (полученное значение делится на 3).
Разработано 2 способа организации 3-хфазной сети.
«Звезда»
Характеризуется одной точкой соединения. Нагреватель находится между «нулём» и фазой, поэтому напряжение на его концах получится по 220 В.
«Треугольник»
Место нагревателя – между двумя фазами, поэтому напряжение на концах будет достигать 380 В.
При сравнении двух схем с реальными цифровыми значениями, в «Треугольнике» ток, проходящий через нагреватель, будет меньше, а сопротивление окажется меньше в «Звезде».
5. Таблицы помогут отыскать значение удельной поверхности.
6. Длина проволоки ищется так:
где ρ обозначает номинальную величину сопротивления проволоки длиной 1м.
7. Чтобы найти вес проволочной части нагревателя, действуем так:
где μ представляет собой вес однометровой проволоки.
8. Зная, какого размера нам нужна проволока, вычитываем площадь поверхности с учётом её длины:
S = L x 3,14 x d,
где d обозначает диаметр материала
9. Оперируя значениями мощности и площади поверхности, просчитываем её удельное значение:
где за β принимается поверхностная мощность нагревателя.
Каждый материал имеет свою конкретную β, которая подаётся в графической или табличной системе. На неё влияет допустимая рабочая температура, которая не может быть больше заданной.
Для агрегатов с высокой степенью нагрева выбирается поверхностная мощность, рассчитанная по следующей формуле:
βдопус. = βэф.х α,
где α – параметр эффективности излучения;
βэф. – мощность нагревателей на их поверхности, которая зависит от температуры получающей энергию среды.
α и β берутся из таблиц.
Сушильное оборудование с термонагревом до +300˚С имеет постоянное числовое значение поверхностной мощности: (4-6) ч 10 4 Вт/м 2 .
10. Находим диаметр токоподающей части нагревателя:
где ρt – величина удельного сопротивления при той температуре, которая задана для правильного ведения технологического процесса.
где ρ20 – это значение сопротивления, приходящегося на единицу длины, при +20˚С;
k – поправочный коэффициент, показывающий зависимости сопротивления от термического показателя.
11. Длина проволоки вычисляется по данной формуле:
Как предупредить перегрев? Надо растянуть спиралеподобную проволоку таким образом, чтобы шаг между витками на 150-200% превосходил диаметр резистивного материала.
Четыре аспекта при подборе нагревателей
Выбирая нагреватели, ориентируйтесь на их эксплуатационные характеристики.
- Чтобы нагрев был действительно высоким, следует выбирать материалы с большим удельным сопротивлением. В противном случае понадобится увеличить длину нагревателя и сделать меньше значение поперечного сечения проволоки. Когда нагреватель используется для печей, сушильных шкафов, то не всегда разумно менять его линейные параметры (он может попросту не поместиться в располагаемой зоне).
- Стойкость к термическим разрушениям, формирования окалины на поверхности, сохранение прочности при температурных изменениях, стабильность физических свойств с течением времени являются важными показателями при выборе формирующих температуру элементов.
- Учитывается значение термического коэффициента сопротивления. Когда оно большое, приходится монтировать понижающие напряжение трансформаторы, которые способствуют постепенному разогреванию оборудования.
- Чтобы проволока, лента, спираль получились нужно конфигурации и размера, исходные материалы выбираются с оптимальной пластичностью и способностью к свариванию.
Нихром & фехраль: чем обусловлен выбор
Какие проволоки более востребованы: на основе никеля или железа? У Fe значение сопротивления на единицу площади больше, чем у Ni, поэтому использование материала для изготовления нагревателя будет более экономным. Ещё один приятный момент в сравнении удельного веса – железо выигрывает в этом соревновании в среднем на 5%. Поэтому финансовая экономия налицо.
Везде, где будет «плюс», надо учитывать и «минус». Железистые продукты быстрее ломаются в отличие от никелевых. Навивка проволоки в спираль в фехралях происходит только в разогретом состоянии (до +300˚С), а уже при +600˚С начинается рекристаллизация то негативно влияет на длительность применения нагревателей. Воздушное окисление у Fe-содержащих материалов происходит сильнее и быстрее, чем у никелевых аналогов.
Поэтому, когда термические процессы ограничены +1200˚С (реже +1400˚С), можно выбирать железистую проволоку, особенно когда её эксплуатация предусмотрена в среде, содержащей серы или глинозёмную керамику. Однако обновлять фехралевые нагреватели понадобится чаще.
Никелесодержащая проволока не зря стόит дороже. Она более приемлема для разных термических условий эксплуатации, меньше загрязняется продуктами горения на поверхности. Каждый выбирает для себя сам, что ему лучше: сниженная цена на покупку нагревателя или более длительный период его работы.
Применение, форма на продажу, цена
- Нихром востребован в печах по сушке и обжигу, в электроплитах, в испарителях продукции для вейперов, системах подогрева воздуха и воды, в электрических кухонных плитах. Из него изготавливают соединители, реостаты и другую продукцию, эксплуатируемую в условиях повышенной сложности.
- Выпускают фехралевую и нихромовую проволоку в виде бухтовой проволоки и холоднотянутой нити. Диаметр 0,01-1см. Номенклатурный ряд пополняется прутка из горячекатаного материала, лента холодной прокатки и с плющением, круглыми полуфабрикатами.
- При комнатной температуре пластичность фехраля на 5-10% ниже, чем у нихрома. Также лидирует нихром и при временном сопротивлении усилию на разрыв.
- Фехраль твёрже, поэтому ему сложнее придать нужную форму (нужен нагрев при навивке в спираль).
- Повышение температуры выше +1200˚С негативно влияет настабильность состояния железистой проволоки. Нихром не меняет своего кристаллического состояния при термическом значении до +1200˚С, а связи с чем дольше пригоден в производственных процессах.
- Ценовой формат следующий: никель в 10 раз дороже железа, а разница в покупке сплавов составляет более 300%. Однако, приобретая нагреватели, надо принимать во внимание не только финансовый показатель, но и условия применения, долговечность использования. В ряде случаев быстрый износ, остановка печей выливаются в значительные издержки, поэтому правильнее будет остановиться не на фехралевой, а нихромовой термической продукции.
- Также можно изучить свойства других сплавов, в которые добавлен алюминий. Он повышает стойкость к окалине и обеспечивает повышенную устойчивость в процессе поддержания условий обжига (сушки, спекания) и при смене температурных фаз.
Что делать для точного подбора и профессионального изготовления
Теперь вы имеете точное представление о том, что собой представляют фехралевые и нихромовые токопроводящие нагреватели. Их количество можно долго и скрупулёзно рассчитывать по формулам. А более быстро получится выполнить подбор, если использовать размещённый на сайте калькулятор. А если углубиться в расчёты, учитывать сопутствующие факторы эксплуатации, то и калькулятора, и приведенных формул окажется мало.
В этом случае мы приглашаем напрямую обращаться к нашим специалистам, которые, имея многолетний опыт, наиболее точно поработают с параметрами проектируемых нагревателей. После получения всех расчётных составляющих мы в индивидуальном порядке изготовим нагреватели, которые проявят свои эксплуатационные качества в полной мере.
Как намотать спираль нагревателя эллипсной формы
Сидел я на днях мух считал и вот что подумал, что если нихромовую спираль залить гипсом? Сделать а-ля керамический нагреватель в домашних условиях.
Вспомнил что где-то у меня оставалась гипсовая шпаклевка (из которой я делал сопла на пиротехнические фонтанчики)
Шпаклевка эта выдерживала довольно большие температуры без растрескивания,
я по быстрому слепил небольшой нагреватель из куска нихрома и двух болтиков для контактов и обмазал гипсом так чтоб весь нихром был покрыт, а болтики торчали из гипса.
Вот сегодня эта штука высохла и я убедился в работоспособности этой конструкции.
Но нагреватель получился довольно хрупкий нужно делать каркас для усиления (либо поверх готового нагревателя, либо вместе с нихромом заливать)
На практике хочу применить такой нагреватель для поддержания температуры в жидкости.
как в магнитной мешалке или USB Подогревателе для чашки, то есть подставка с подогревом на которую ставиться банка, чашка с горячей жидкостью.
Кто что думает о такой технологии? Только сильно не бейте.
_________________
Профессиональный барабанщик легко стряхивает градусник до -12 по Цельсию.
Заголовок сообщения: Re: Нагреватель из нихромовой спирали
Добавлено: Вт окт 21, 2014 12:41:01
Мудрый кот |
Коэффициенты теплопроводности строительного гипса = 0,35
для керамики он = 1,5 и выше — может сравнятся с металлом 50 и выше.
в результате спираль может сгореть от перегрева изза малого отвода тепла от нагревателя.
в вашем случае лучше нагревать воду — у нее теплопроводность 2.
Заголовок сообщения: Re: Нагреватель из нихромовой спирали
Добавлено: Вт окт 21, 2014 12:54:20
Прорезались зубы |
igor-x писал(а):
в вашем случае лучше нагревать воду — у нее теплопроводность 2.
Если нагревать воду то да можно и кипятильник в чашку кинуть, но ведь не в любую жидкость так получиться
_________________
Профессиональный барабанщик легко стряхивает градусник до -12 по Цельсию.
Сборка печатных плат от $30 + БЕСПЛАТНАЯ доставка по всему миру + трафарет
Заголовок сообщения: Re: Нагреватель из нихромовой спирали
Добавлено: Вт окт 21, 2014 12:57:23
Мудрый кот |
тогда взять керамический нагреватель? зачем испытывать прочность гипса в воде ?
Опубликованы материалы вебинара Компэл, посвященного литиевым аккумуляторам EVE Energy и решениям для управления перезаряжаемыми источниками тока. На вебинаре мы представили информацию не только по линейкам аккумуляторной продукции EVE, но и по решениям для управления ею, что поможет рассмотреть эти ХИТ в качестве дополнительной альтернативы для уже выпускающихся изделий. Также рассмотрели нюансы работы с производителем и сервисы, предоставляемые Компэл по данной продукции.
Заголовок сообщения: Re: Нагреватель из нихромовой спирали
Добавлено: Вт окт 21, 2014 13:06:05
Прорезались зубы |
igor-x писал(а):
тогда взять керамический нагреватель?
Вот только где купить керамический нагреватель нужной формы, ну и думаю он будет не очень дешев.
igor-x писал(а):
зачем испытывать прочность гипса в воде ?
Вы кажется немного не поняли, гипс не помещается в жидкость.
Вот к примеру USB Подогреватель для чашки
Это просто подставка под чашку с нагревателем внутри.
_________________
Профессиональный барабанщик легко стряхивает градусник до -12 по Цельсию.
Компания Компэл, официальный дистрибьютор EVE Energy, бренда №1 по производству химических источников тока (ХИТ) в мире, предлагает продукцию EVE как со склада, так и под заказ. Компания EVE широко известна в странах Европы, Америки и Юго-Восточной Азии уже более 20 лет. Недавно EVE была объявлена поставщиком новых аккумуляторных элементов круглого формата для электрических моделей «нового класса» компании BMW. Продукция EVE предназначена для самого широкого спектра применений – от бытового до промышленного.
Заголовок сообщения: Re: Нагреватель из нихромовой спирали
Добавлено: Вт окт 21, 2014 14:09:13
Мудрый кот |
тогда совсем просто — если неважно от какого источника питать нагреватель, то берем диск от электрочайника (200 руб продается в хозтоварах)- у него плоская алюминиевая пластина, и греем все это от сети + терморегулятор.
Вопросы По Нагревателю Из Нихрома
Вы можете написать сейчас и зарегистрироваться позже. Если у вас есть аккаунт, авторизуйтесь, чтобы опубликовать от имени своего аккаунта.
Примечание: Ваш пост будет проверен модератором, прежде чем станет видимым.
Поделиться
Последние посетители 0 пользователей онлайн
- Ни одного зарегистрированного пользователя не просматривает данную страницу
Объявления
Сообщения
Для чего она запитана через эту плату, что происходит если ты её просто выключишь, или через какое-то время.
Отлично . Теперь переходим к изучению микроконтроллерной обвязки . п.с. Одновибратор можно сделать без интегральных компонентов . Попробуйте перейти в раздел «Дай схему» . Услуга «приедь и припаяй» или «разобъясни на пальцах» предоставляется по договоренности .
Лучше его нет. Долговечный, только если сделать спираль красной, под спиралью медь выгорает, со временем.
Электрические нагревательные элементы
Электрические нагревательные элементы применяются в бытовой и промышленной технике. Применение различных нагревателей известно всем. Это электрические плиты, жарочные шкафы и духовки, электрокофеварки, электрические чайники и отопительные приборы всевозможных конструкций.
Электрические водонагреватели, чаще именуемые бойлерами, тоже содержат нагревательные элементы. Основой многих нагревательных элементов служит проволока с высоким электрическим сопротивлением. И чаще всего эта проволока изготовлена из нихрома.
Открытая нихромовая спираль
Самым старым нагревательным элементом является, пожалуй, обычная нихромовая спираль. Когда-то давно, в ходу были самодельные электрические плитки, кипятильники для воды и обогреватели типа «козёл». Имея под рукой нихромовый провод, которым можно было «разжиться» на производстве, изготовить спираль требуемой мощности не представляло никаких проблем.
Известно было, какого диаметра провод и какая длина требуется для намотки спирали нужной мощности. Эти магические числа до сих пор можно найти в сети интернет. На рисунке показана таблица, где приведены данные о спиралях различной мощности при напряжении питания 220В.
Расчет электрической спирали нагревательного элемента
Здесь все просто и понятно. Задавшись требуемой мощностью и диаметром нихромового провода, имеющимся под рукой, остается только отрезать кусок нужной длины и навить его на оправку соответствующего диаметра. При этом в таблице указана длина получившейся спирали. А что делать, если имеется провод с диаметром не указанным в таблице? В этом случае спираль придется просто рассчитать.
Как рассчитать нихромовую спираль
При необходимости рассчитать спираль достаточно просто. В качестве примера приведен расчет спирали из нихромовой проволоки диаметром 0,45 мм (такого диаметра в таблице нет) мощностью 600 Вт на напряжение 220 В. Все расчеты выполняются по закону Ома.
Сначала следует рассчитать ток, потребляемый спиралью.
I = P/U = 600/220 = 2,72 A
Для этого достаточно заданную мощность поделить на напряжение и получить величину тока, проходящего через спираль. Мощность в ваттах, напряжение в вольтах, результат в амперах. Все согласно системе СИ.
По известному теперь току рассчитать требуемое сопротивление спирали достаточно просто: R = U/I = 220/2,72 = 81 Ом
Формула для подсчета сопротивления проводника R=ρ*L/S,
где ρ – удельное сопротивление проводника (для нихрома 1.0÷1.2 Ом•мм2/м), L — длина проводника в метрах, S – сечение проводника в квадратных миллиметрах. Для проводника диаметром 0,45 мм сечение составит 0,159 мм2.
Отсюда L = S * R / ρ = 0.159 * 81 / 1.1 = 1170 мм, или 11,7 м.
В общем, получается не столь уж сложный расчет. Да собственно и изготовление спирали не так уж и сложно, что, несомненно, является достоинством обычных нихромовых спиралей. Но это достоинство перекрывается множеством недостатков, присущих открытым спиралям.
Прежде всего, это достаточно высокая температура нагрева – 700…800˚C. Нагретая спираль имеет слабое красное свечение, случайное прикосновение к ней может причинить ожог. Кроме того возможно поражение электрическим током. Раскаленная спираль выжигает кислород воздуха, привлекает к себе пылинки, которые выгорая, дают весьма неприятный аромат.
Но главным недостатком открытых спиралей следует считать их высокую пожароопасность. Поэтому пожарная охрана попросту запрещает применение обогревателей с открытой спиралью. К таким обогревателям, прежде всего, относится, так называемый «козел», конструкцию которого можно посмотреть на видео.
Вот такой вот получился дикий «козел»: сделан он нарочито небрежно, просто, даже очень плохо. Пожара с таким обогревателем ждать придется недолго. Более совершенная конструкция подобного отопительного прибора показана на рисунке ниже.
Обогреватель типа ПЭТ 1 кВт, 220 В
Нетрудно видеть, что спираль закрыта металлическим кожухом, именно это предотвращает прикосновение к разогретым токоведущим частям. Пожароопасность такого устройства намного меньше, чем показанного на предыдущем видео.
Когда-то давно в СССР выпускались обогреватели-рефлекторы. В центре никелированного отражателя имелся керамический патрон, в который наподобие лампочки с цоколем E27, вворачивался нагреватель мощностью 500Вт. Пожароопасность такого рефлектора тоже очень высока. Ну, вот как-то не задумывались в те времена, к чему может привести использование таких обогревателей.
Обогреватель рефлекторного типа
Совершенно очевидно, что различные обогреватели с открытой спиралью можно, вопреки требованиям пожарной инспекции, использовать лишь под неусыпным присмотром: ушел из помещения – выключи обогреватель! Еще лучше просто отказаться от использования обогревателей подобного типа.
Электрические нагревательные элементы с закрытой спиралью
Чтобы избавиться от открытой спирали, были изобретены Трубчатые Электрические Нагреватели – ТЭНы. Конструкция ТЭНа показана на рисунке ниже.
Конструкция ТЭНа
Нихромовая спираль 1 спрятана внутри тонкостенной металлической трубки 2. Спираль изолирована от трубки наполнителем 3 с высокой теплопроводностью и высоким электрическим сопротивлением. В качестве наполнителя чаще всего применяется периклаз (кристаллическая смесь окиси магния MgO, иногда с примесями других окислов).
После заполнения изолирующим составом трубку опрессовывают, и под большим давлением периклаз превращается в монолит. После такой операции спираль жестко фиксируется, поэтому электрический контакт с корпусом – трубкой исключен полностью. Конструкция получается настолько прочной, что любой ТЭН можно изгибать, если того требует конструкция отопительного прибора. Некоторые ТЭНы имеют весьма причудливую форму.
Спираль соединяется с металлическими выводами 4, которые выходят наружу через изоляторы 5. Подводящие провода присоединяются к резьбовым концам выводов 4 с помощью гаек и шайб 7. Крепление ТЭНов в корпусе устройства осуществляется при помощи гаек и шайб 6, обеспечивающих, при необходимости, герметичность соединения.
При соблюдении условий эксплуатации подобная конструкция достаточно надежна и долговечна. Именно это и привело к весьма широкому применению ТЭНов в устройствах различного назначения и конструкции.
Трубчатые электрические нагревательные элементы
По условиям эксплуатации трубчатые электрические нагревательные элементы делятся на две большие группы: воздушные и водяные. Но это просто такое название. На самом деле воздушные ТЭНы предназначены для работы в различных газовых средах. Даже обычный атмосферный воздух является смесью нескольких газов: кислорода, азота, углекислого газа, имеются даже примеси аргона, неона, криптона и т.д.
Воздушная среда бывает самой разнообразной. Это может быть спокойный атмосферный воздух или поток воздуха, движущийся со скоростью до нескольких метров в секунду, как в тепловентиляторах или тепловых пушках.
Разогрев оболочки ТЭНа может достигать 450 ˚C и даже более. Поэтому для изготовления внешней трубчатой оболочки применяются различные материалы. Это может быть обычная углеродистая сталь, нержавеющая сталь или жаропрочная, жаростойкая сталь. Все зависит от окружающей среды.
Для улучшения теплоотдачи некоторые ТЭНы снабжаются ребрами на трубках в виде навитой металлической ленты. Такие нагреватели называются оребренными. Применение таких элементов наиболее целесообразно в движущейся воздушной среде, например, в тепловентиляторах и тепловых пушках.
Водяные трубчатые электрические нагревательные элементы также применяются не обязательно в воде, это общее название различных жидкостных сред. Это может быть масло, мазут и даже различные агрессивные жидкости. Жидкостные трубчатые электрические нагревательные элементы применяются в электрических котлах, дистилляторах, электрических опреснителях морской воды и просто в титанах для кипячения питьевой воды.
Теплопроводность и теплоемкость воды намного выше, нежели у воздуха и других газовых сред, что обеспечивает, по сравнению с воздушной средой, лучший, более быстрый, отвод тепла от ТЭНа. Поэтому при одинаковой электрической мощности водяной нагреватель имеет меньшие геометрические размеры.
Как избавиться от накипи и продлить срок жизни ТЭНа
Кроме химических средств для защиты от накипи используются различные устройства. Прежде всего, это магнитные преобразователи воды. В мощном магнитном поле кристаллы «жестких» солей меняют свою структуру, превращаются в хлопья, становятся мельче. Из таких хлопьев накипь образуется менее активно, большая часть хлопьев просто вымывается потоком воды. Этим и достигается защита нагревателей и трубопроводов от накипи. Магнитные фильтры-преобразователи выпускаются многими зарубежными фирмами, такие фирмы существуют и в России. Подобные фильтры выпускаются как врезного, так и накладного типа.
Электронные умягчители воды
В последнее время все более популярными становятся электронные умягчители воды. Внешне все выглядит очень просто. На трубу устанавливается небольшая коробочка, из которой выходят провода-антенны. Провода накручиваются вокруг трубы, при этом даже не надо счищать краску. Установить прибор можно в любом доступном месте, как показано на рисунке ниже.
Электронный умягчитель воды
Единственное, что потребуется для подключения прибора, это розетка на 220В. Прибор рассчитан на долговременное включение, его не надо периодически отключать, поскольку выключение приведет к тому, что вода снова станет жесткой, опять будет образовываться накипь.
Принцип работы прибора сводится к излучению колебаний в диапазоне ультразвуковых частот, которые могут достигать до 50КГц. Частота колебаний регулируется с помощью пульта управления прибора. Излучения производятся пакетами по нескольку раз в секунду, что достигается использованием встроенного микроконтроллера. Мощность колебаний невелика, поэтому никакой угрозы для здоровья человека подобные приборы не представляют.
Целесообразность установки подобных приборов определить достаточно легко. Все сводится к тому, чтобы определить, насколько жесткая вода течет из водопроводной трубы. Тут даже не надо никаких «заумных» приборов: если после мытья ваша кожа становится сухой, от брызг воды на кафельной плитке появляются белые разводы, в чайнике появляется накипь, стиральная машина стирает медленнее, чем в начале эксплуатации – однозначно из крана течет жесткая вода. Все это может привести к выходу из строя нагревательных элементов, и, следовательно, самих чайников или стиральных машин.
Жесткая вода плохо растворяет различные моющие средства – от обычного мыла до супермодных стиральных порошков. В результате порошков приходится класть больше, но это помогает мало, так как кристаллы солей жесткости задерживаются в тканях, качество стирки оставляет желать лучшего. Все перечисленные признаки жесткости воды красноречиво говорят о том, что необходимо устанавливать умягчители воды.
Подключение и проверка ТЭНов
При подключении ТЭНа должен использоваться провод подходящего сечения. Здесь все зависит от тока, протекающего через ТЭН. Чаще всего известны два параметра. Это мощность самого нагревателя и напряжение питания. Для того, чтобы определить ток, достаточно разделить мощность на напряжение питания.
Простой пример. Пусть имеется ТЭН мощностью 1 КВт (1000 Вт) на напряжение питания 220 В. Для такого нагревателя получается, что ток составит
I = P/U = 1000/220 = 4,545A.
Согласно таблицам, размещенным в ПУЭ, такой ток может обеспечить провод сечением 0,5 мм2 (11 А), но с целью обеспечения механической прочности лучше применить провод сечением не менее 2,5 мм2. Как раз таким проводом чаще всего выполняется подвод электричества к розеткам.
Но перед тем, как производить подключение, следует убедиться в исправности даже нового, только что купленного ТЭНа. Прежде всего, надо измерить его сопротивление и проверить целостность изоляции. Сопротивление ТЭНа достаточно просто рассчитать. Для этого надо напряжение питания возвести в квадрат, и поделить на мощность. Например, для нагревателя мощностью 1000 Вт этот расчет выглядит так:
Такое сопротивление должен показать мультиметр при подключении его к выводам ТЭНа. Если же спираль оборвана, то, естественно, мультиметр покажет обрыв. Если взять ТЭН иной мощности, то сопротивление, естественно, будет другим.
Проверка целостности изоляции
Для проверки целостности изоляции следует измерить сопротивление между любым из выводов и металлическим корпусом ТЭНа. Сопротивление наполнителя-изолятора таково, что на любом пределе измерений мультиметр должен показать обрыв. Если окажется, что сопротивление равно нулю, то спираль имеет контакт с металлическим корпусом нагревателя. Такое может случиться даже с новым, только купленным ТЭНом.
Вообще для проверки изоляции применяется специальный прибор мегаомметр, но не всегда и не у всех он есть под рукой. Так что вполне подойдет и проверка обычным мультиметром. Хотя бы такую проверку надо сделать обязательно.
Как уже было сказано, трубчатые электрические нагревательные элементы можно изгибать даже после наполнения изолятором. Существуют нагреватели самой разнообразной формы: в виде прямой трубки, U-образные, свернутые в кольцо, змейку или спираль. Все зависит от устройства нагревательного прибора, в который предполагается установить ТЭН. Например, в проточном водонагревателе стиральной машины применяются ТЭНы свитые в спираль.
Некоторые трубчатые электрические нагревательные элементы имеют элементы защиты. Самая простая защита это термопредохранитель. Уж если он сгорел, то приходится менять весь ТЭН, но до пожара дело не дойдет. Есть и более сложная система защиты, позволяющая использовать ТЭН после ее срабатывания.
Одной из таких защит является защита на основе биметаллической пластины: тепло от перегретого ТЭНа изгибает биметаллическую пластину, которая размыкает контакт и обесточивает нагревательный элемент. После того, как температура снизится до допустимого значения, биметаллическая пластина разгибается, контакт замыкается и ТЭН снова готов к работе.
Трубчатые электрические нагревательные элементы с терморегулятором
При отсутствии горячего водоснабжения приходится пользоваться бойлерами. Конструкция бойлеров достаточно проста. Это металлическая емкость, спрятанная в «шубу» из теплоизолятора, поверх которого находится декоративный металлический корпус. В корпус же врезан термометр, показывающий температуру воды. Конструкция бойлера показана на рисунке.
Бойлер накопительного типа
Некоторые бойлеры содержат магниевый анод. Его назначение защита от коррозии нагревателя и внутреннего бака бойлера. Магниевый анод является расходным материалом, его приходится периодически менять при обслуживании бойлера. Но в некоторых бойлерах, видимо, дешевой ценовой категории, такая защита не предусмотрена.
В качестве нагревательного элемента в бойлерах применяется ТЭН с терморегулятором, конструкция одного из них показана ниже.
ТЭН с терморегулятором
В пластмассовой коробке расположен микровыключатель, который срабатывает от жидкостного термодатчика (прямая трубка рядом с ТЭНом). Форма собственно ТЭНа может быть самой разнообразной, на рисунке показана самая простая. Все зависит от мощности и конструкции бойлера. Степень нагрева регулируется за счет положения механического контакта, управляемого белой круглой рукояткой, расположенной внизу коробки. Здесь же находятся клеммы для подвода электрического тока. Крепление нагревателя производится при помощи резьбы.
Мокрые и сухие ТЭНы
Подобный нагреватель находится в непосредственном контакте с водой, поэтому такой ТЭН называют «мокрым». Срок службы «мокрого» ТЭНа находится в пределах 2…5 лет, после чего его приходится менять. В общем-то, срок службы невелик.
Для увеличения срока службы нагревательного элемента и всего бойлера в целом французской компанией Atlantic в 90-х годах прошлого века была разработана конструкция «сухого» ТЭНа. Если сказать проще, то нагреватель был спрятан в металлическую защитную колбу, исключающую прямой контакт с водой: нагревательный элемент греется внутри колбы, которая передает тепло воде.
Естественно, что температура колбы намного ниже, чем собственно ТЭНа, поэтому образование накипи при той же жесткости воды происходит не столь интенсивно, в воду передается большее количество тепла. Срок службы таких нагревателей достигает 10…15 лет. Сказанное справедливо для хороших условий эксплуатации, прежде всего стабильности напряжения питания. Но даже и в хороших условиях «сухие» ТЭНы тоже вырабатывают свой ресурс, и их приходится менять.
Вот здесь обнаруживается еще одно достоинство технологии «сухого» ТЭНа: при замене нагревателя нет никакой необходимости сливать воду из бойлера, для чего следует отключать его от трубопровода. Достаточно просто вывернуть нагреватель и заменить его на новый.
Компания Atlantic, конечно же, запатентовала свое изобретение, после чего стала продавать лицензию другим фирмам. В настоящее время бойлеры с «сухим» нагревательным элементом выпускают и другие фирмы, например, Electrolux и Gorenje. Конструкция бойлера с «сухим» ТЭНом показана на рисунке.
Бойлер с «сухим» нагревателем
Кстати, на рисунке показан бойлер с керамическим стеатитовым нагревателем. Устройство такого нагревателя смотрите ниже.
Керамический нагреватель
На керамическом основании закреплена обычная открытая спираль из проволоки с высоким сопротивлением. Температура нагрева спирали достигает 800 градусов и передается в окружающую среду (воздух под защитной оболочкой) конвекцией и теплоизлучением. Естественно, что такой нагреватель применительно к бойлерам может работать только в защитной оболочке, в воздушной среде, прямой контакт с водой попросту исключен.
Спираль может быть намотана в несколько секций, о чем говорит наличие нескольких клемм для подключения. Это позволяет менять мощность нагревателя. Максимальная удельная мощность подобных нагревателей не превышает 9 Вт/см 2 .
Условием нормальной работы такого нагревателя является отсутствие механических нагрузок, изгибов и вибраций. На поверхности не должно быть загрязнений в виде ржавчины и масляных пятен. И, конечно же, чем более стабильным будет напряжение питания, без выбросов и скачков, тем более долговечна работа нагревателя.
Но электротехника не стоит на месте. Технологии развиваются, усовершенствуются, поэтому кроме ТЭНов в настоящее время разработаны и успешно применяются самые разнообразные электрические нагревательные элементы. Это керамические нагревательные элементы, карбоновые нагревательные элементы, инфракрасные нагревательные элементы, но это будет темой для другой статьи.
Смотрите также по этой теме: