Как определить направление этой силы
Перейти к содержимому

Как определить направление этой силы

  • автор:

2. Сформулируйте и запишите закон Ампера(Сила Ампера). Как определяется направление этой силы? Выведите формулу для определения работы перемещения проводника с током в магнитном поле.

Сила , с которой магнитное поле действует на элемент проводникаdl с током, находящегося в магнитном поле, прямо пропорционально силе тока I в проводнике и векторному произведению элемента длиной dl проводника на магнитную индукцию .. Направлениеопределяется по правилу левой руки. Рассмотрим контур с током, образованный неподвижными проводами и скользящей по ним перемычкой.

, . Выясним, как изменяется Ф через площадь контура.,,. Работа, совершаемая магнитной силой над участком контура с током равна произведению силы тока на величину магнитного потока через поверхность, описанную этим участком при своем движении.

1. Как доказать, что электростатическое поле является потенциальным? Чему равна циркуляция вектора напряжённости?

Потенциальными называются поля, в которых работа, совершаемая действующими силами при перемещении тела из одного положения в другое, не зависит от траектории перемещения.

В электростатическом поле заряда Q заряд из т.1 в т.2 перемещается вдоль произвольной траектории.,,,. Доказано, что работа не зависит от траектории.=>— циркуляция вектора напряжённости.

2. Выведите дифференциальное уравнение затухающих электромагнитных колебаний и приведите его решение. По какому закону изменяется амплитуда затухающих колебаний? Как связана частота затухающих колебаний с собственной частотой? Раскройте физический смысл логарифмического декремента и коэффициента затухания.

Конденсатор предварительно заряжен. По второму закону Кирхгофа: ,,,.

Обозначим — коэффициент затухания.— собственная частота.,,,,,,-изменение амплитуды затухающих колебаний. Логарифмический декремент затухания:— время, за которое амплитуда уменьшается в е раз.-связь междуи.— коэффициент затухания — в— раз уменьшается амплитуда в единицу времени.

Дайте определение электрического диполя. Чему равен и как направлен его электрический момент? Выведите формулу для определения напряжённости поля на перпендикуляре, восстановленном из середины диполя.

Электрический диполь – система двух равных по модулю разноименных точечных зарядов, расстояние между которыми значительно меньше расстояния до рассматриваемых точек поля. Плечом диполяназывается вектор, направленный по оси диполя от отрицательного заряда к положительному и равный расстоянию между ними. Вектор , совпадающий по направлению с плечом диполя и равный произведению зарядана плечоназываетсяэлектрическим моментом диполя. Напряжённость поля на перпендикуляре, восстановленном к оси из его середины.

, т.к..

, ,,

2. В чем сущность явления самоиндукции? Что такое время релаксации? Запишите формулы для силы тока при замыкании и размыкании цепи.

При изм-ии силы тока в контуре будет изм-ся также и сцепленный с ним магнитный поток, след-но, в контуре будет индуцироваться ЭДС. Возникновение ЭДС индукции в проводящем контуре при изм-ии в нем силы тока наз-ся самоиндукцией. В цепи, содержащей источник тока ε, L, R. Под действием внешней ЭДС в цепи течет ток I0= ε/R

При размыкании цепи ток через катушку начнет уменьшаться, будет индуцироваться ЭДС: ,ток в цепи в любой момент времени.=>,.— время релаксации – время в течении которого сила тока уменьшается в е раз. При замыкании цепи: помимо времени ЭДС возникает и ЭДС самоиндукции.,,,,,,, где

Сила Ампера и сила Лоренца

Из курса физики 9 класса известно, что электрический ток — это движение заряженных частиц. Опыты показывают, что при движении заряженные частицы взаимодействуют с магнитным полем. Рассмотрим особенности этого взаимодействия.

Сила Ампера и сила Лоренца

Если рассмотреть устройство любого электрического двигателя, то в нём всегда можно найти два элемента:

Устройство электродвигателя

  • статор, создающий магнитное поле;
  • ротор, двигающийся под действием статора и состоящий из рамок, проводящих электрический ток.

Магнитное поле, создаваемое статором, порождает силу, которая действует на рамку с электрическим током и поворачивает ее. Сила, которая при этом возникает, называется силой Ампера — именем физика, открывшего ее.

Если ток в рамке исчезнет, то и сила Ампера также уменьшится до нуля. А поскольку ток — это движение заряженных частиц, то можно предположить, что сила Ампера возникает при действии магнитного поля на заряженные частицы, и проводник здесь не обязателен.

Опыт полностью подтверждает это предположение. Если в вакууме создать поток заряженных частиц (как правило, электронов) и направить их через магнитное поле, то траектории движения перестанут быть прямыми. А при определенных соотношениях скоростей и силы магнитного поля траектории могут даже стать окружностями или спиралями.

Сила Ампера, действующая на проводник с током, возникает потому, что магнитное поле действует на заряды, движущиеся в проводнике. Этот механизм возникновения силы Ампера был открыт физиком Х. Лоренцем, и поэтому сила, действующая на движущийся заряд в магнитном поле, была названа его именем.

Можно спросить: определяет ли сила Лоренца закон Ампера? Ответ утвердителен: да, определяет.

Формулы силы Ампера и силы Лоренца

Поскольку сила Ампера — это результат действия силы Лоренца, то и формулы, описывающие эти силы, близки, единицы измерения одинаковы. Сила Ампера и сила Лоренца пропорциональны величине перпендикулярной составляющей индукции $B_\perp=Bsin\alpha$, следовательно, эта часть в обеих формулах будет общей. Кроме того, обе этих силы пропорциональны величине заряда и его скорости движения. То есть формула силы Лоренца примет вид:

$$F_L = qBv sin \alpha$$

Формула силы Ампера будет аналогичной, место заряда займет величина тока $I$ (поскольку ток равен отношению заряда, проходящего по проводнику, ко времени прохождения), место скорости займет длина проводника $Δl$ (поскольку скорость равна отношению длины, которую прошел заряд, ко времени этого прохождения). В результате формула силы Ампера примет вид:

$$F_A = I B Δl sin \alpha$$

Направление силы Ампера и силы Лоренца

В отличие от многих других сил, направление силы Лоренца (а значит, и силы Ампера) не совпадает с направлением движения носителя и не совпадает с направлением на источник магнитного поля. Для определения направления этих сил используется мнемоническое правило левой руки.

Если расположить левую руку так, чтобы четыре вытянутых пальца указывали на направление движения положительных зарядов (направление тока), а магнитные линии входили в ладонь, «прокалывая» ее, то отставленный большой палец укажет направление действия силы Лоренца (или Ампера).

Например, если линии магнитного поля направлены сверху вниз, то руку надо располагать ладонью вверх. Теперь, если проводник с током направлен вперед и мы расположим четыре вытянутых пальца вперед, то отставленный большой палец укажет направление справа налево. Это и будет направление силы Ампера, действующей на данный проводник, или силы Лоренца, если двигаются заряды.

Правило левой руки

Что мы узнали?

На заряд, движущийся в магнитном поле, действует сила Лоренца. Поскольку электрический ток — это упорядоченное движение зарядов, то на проводник с током в магнитном поле действует сила Ампера, которая представляет собой сумму сил Лоренца, действующих на движущиеся в проводнике заряды.

Сила Лоренца

На проводник с током в магнитном поле действует сила Ампера. Однако магнитное поле способно взаимодействовать и с отдельными электрическими зарядами. Рассмотрим кратко эту тему, узнаем, как определить направление и величину силы, действующей на заряд в магнитном поле.

Взаимодействие магнитного поля с зарядами

Опыты показывают, что магнитное поле никак не влияет на покоящийся электрический заряд. Почему же магнитное поле взаимодействует с проводником с электрическим током, который представляет собой движущиеся электрические заряды ?

Причина в движении зарядов. Магнитное поле не взаимодействует с зарядом, пока его скорость в этом поле равна нулю. Однако, как только заряд начинает двигаться, сразу же возникает сила, направленная перпендикулярно вектору скорости заряда.

Это приводит к интересному результату. Из механики известно, что если материальная точка движется под действием силы, направленной перпендикулярно вектору скорости, то ее траектория представляет собой окружность. Именно это и происходит с движущимися заряженными частицами в однородном магнитном поле. Заряженные частицы под действием магнитного поля движутся по окружностям.

Движение заряженной частицы в магнитном поле

Сила Лоренца

Сила, которая возникает при движении заряда в магнитном поле, называется силой Лоренца. Именно силы Лоренца, действующие на отдельные заряды в проводнике, приводят к появлению общей силы Ампера. Поэтому формулу силы Лоренца можно получить из закона Ампера.

Сила Ампера равна:

$$F_A= IB Δl sin \alpha$$

Величина тока, идущая в проводнике, прямо пропорциональна величине заряда носителей $q$, их концентрации $n$, скорости их движения $v$ и площади поперечного сечения проводника $S$:

Подставляя это выражение в предыдущую формулу, получим:

$$ F_A = qnvSBΔl sin \alpha$$

Сила Ампера действует на проводник в результате сложения сил Лоренца, действующих на каждый из зарядов в проводнике. То есть для получения силы Лоренца, действующей на отдельный носитель, надо величину силы Ампера поделить на число носителей. Число носителей $N$ равно произведению концентрации носителей на объем проводника:

Следовательно, сила Лоренца равна:

Как и в случае силы Ампера, угол $\alpha $ — это угол между направлением движения носителя заряда (вектором скорости) и вектором магнитной индукции.

Направление силы Лоренца определяется точно так же, как и направление силы Ампера: с помощью мнемонического правила левой руки. Если расположить левую руку так, чтобы четыре пальца были направлены по направлению движения положительного заряда (против направления для отрицательного), а перпендикулярная составляющая индукции $B_<\perp>$ входила в ладонь, то большой палец покажет направление силы Лоренца.

Получается, что сила Лоренца всегда направлена перпендикулярно движению заряженной частицы. А это значит, что сила Лоренца не совершает работу и, следовательно, не меняет кинетическую энергию частицы. Она меняет лишь направление ее движения.

Примером использования силы Лоренца является отклоняющая система кинескопов. Отклоняющие системы в телевизорах с кинескопами представляют собой электрические катушки, создающие меняющееся магнитное поле. Под действием этого поля на электроны, вылетающие из электронной пушки, начинает действовать сила Лоренца, они отклоняются и направляются в нужную в данный момент точку экрана.

Отклоняющая система кинескопа

Что мы узнали?

Сила Лоренца — это сила, действующая со стороны магнитного поля на движущийся электрический заряд. Сила Лоренца направлена перпендикулярно скорости движения частицы, и для определения этого направления используется правило левой руки. В однородном магнитном поле траектории заряженных частиц, движущихся под действием силы Лоренца, представляют собой окружности.

Правило левой руки для силы Ампера

Из курса физики известно, что на проводник с током, помещенный в магнитное поле, действует сила Ампера. Для определения направления этой силы используется специальное правило, называемое правилом левой руки. Поговорим кратко об этом правиле.

Сила и закон Ампера

На заряд, движущийся в магнитном поле, действует со стороны этого поля сила, называемая силой Лоренца.

Сила Лоренца

Если в магнитное поле помещен проводник с током, то силы Лоренца, действующие на движущиеся носители заряда в этом проводнике, складываются в силу, называемую силой Ампера.

Модуль силы Ампера рассчитывается по закону Ампера:

$$F= I |\overrightarrow B| Δl sin \alpha,$$

  • $F$ — модуль силы Ампера;
  • $I$ — величина тока в проводнике;
  • $B$ — индукция магнитного поля;
  • $Δl$ — длина проводника;
  • $\alpha$ — угол между линиями магнитного поля и направлением тока в проводнике.

Сила Ампера

Направление силы Ампера

Обычно действие сил совпадает с направлением движения тел или с направлением на источник силы. В случае с силой Ампера ситуация иная.

Направление действия силы Ампера не совпадает ни с направлением движения тока, ни с направлением вектора магнитной индукции. Сила Ампера направлена перпендикулярно обоим этим направлениям. То есть, если линии магнитного поля направлены по вертикали, а проводник расположен горизонтально слева направо, то сила Ампера будет направлена вдоль линии «вперед-назад». Причем ее направление также будет зависеть от направлений магнитной индукции и электрического тока в проводнике. «Просто запомнить» все направления невозможно. Поэтому для силы Ампера установили специальное мнемоническое правило левой руки.

Правило левой руки

Формулировка правила левой руки для силы ампера звучит так:

Если расположить левую руку так, чтобы четыре пальца были направлены по направлению движения тока в проводнике, а перпендикулярная составляющая индукции $B_<\perp>$ входила в ладонь, то отставленный большой палец покажет направление силы Ампера.

Как пользоваться этим правилом? Разберем примеры.

  • Допустим, проводник расположен горизонтально, и ток по нему идет вперед. Следовательно, четыре пальца левой руки надо вытянуть вперед по этому направлению.
  • Теперь допустим, что линии магнитного поля направлены сверху вниз (сверху «север» подковообразного магнита, снизу — «юг»). Следовательно, левую руку надо повернуть ладонью вверх, чтобы линии магнитного поля входили в ладонь и «прокалывали» ее (четыре пальца по-прежнему должны быть вытянуты вперед).
  • Отставленный большой палец левой руки будет направлен влево. Это и есть направление силы Ампера для данной ситуации.

Другой пример.

  • Пусть проводник расположен вертикально. А магнитное поле направлено справа налево (справа «север» магнита, слева — «юг»).
  • Располагаем левую руку четырьмя пальцами вверх. Ладонь открытой стороной должна «смотреть вправо», чтобы магнитные линии входили и «прокалывали» ее.
  • Отставленный большой палец покажет назад. Именно так и будет направлена сила Ампера в данном случае.

Обратите внимание, что силу Ампера порождает только перпендикулярная составляющая магнитного поля. А значит, руку надо располагать так, чтобы линии магнитного поля всегда входили в нее под углом, максимально близким к прямому.

Особым случаем является ситуация, когда направление тока и магнитной индукции совпадает. В этом случае руку невозможно расположить так, чтобы линии магнитной индукции входили в нее. Следовательно, силы Ампера здесь не возникнет. В самом деле, если линии магнитной индукции параллельны направлению тока, то перпендикулярная составляющая этих линий равна нулю, и значение силы Ампера в вышеприведенной формуле также равно нулю.

Различные случаи применения правила левой руки

Что мы узнали?

Для определения направления силы Ампера используется специальное мнемоническое правило левой руки. С помощью этого правила можно не только определить направление силы Ампера, но и обнаружить случай, когда сила Ампера равна нулю.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *