Как найти последовательное сопротивление
Перейти к содержимому

Как найти последовательное сопротивление

  • автор:

Последовательное соединение резисторов. Схема соединения и примеры расчета

Во многих электрических схемах мы можем обнаружить последовательное и параллельное соединение резисторов. Разработчик схем может, например, объединить несколько резисторов со стандартными значениями (E-серии), чтобы получить необходимое сопротивление.

Последовательное соединении резисторов — это такое соединение, при котором ток, протекающий через каждый резистор одинаков, поскольку имеется только одно направление для протекания тока. В тоже время падение напряжения будет пропорционально сопротивлению каждого резистора в последовательной цепи.

Последовательное соединение резисторов

На рисунке ниже, резисторы R1, R2 и R3 связаны друг с другом последовательно между точками А и В с общим током I, который протекает через них.

Эквивалентное сопротивление нескольких последовательно соединенных резисторов можно определить по следующей формуле:

То есть, в нашем случае общее сопротивление цепи будет равно:

R = R1 + R2 + R3 = 1 кОм + 2 кОм + 6 кОм = 9 кОм

Таким образом, мы можем заменить эти три резистора всего лишь одним «эквивалентным» резистором, который будет иметь значение 9 кОм.

Там, где четыре, пять или более резисторов связаны вместе в последовательную цепь, общее или эквивалентное сопротивление всей цепи так же будет равно сумме сопротивлений отдельных резисторов.

Следует отметить, что общее сопротивление любых двух или более резисторов, соединенных последовательно всегда будет больше, чем самое большое сопротивление резистора входящего в эту цепь. В приведенном выше примере R = 9 кОм, тогда как наибольшее значение резистора только 6 кОм (R3).

Напряжение на каждом из резисторов, соединенных последовательно, подчинено другому правилу, нежели протекающий ток. Как известно, из приведенной выше схемы, что общее напряжение питания на резисторах равно сумме разности потенциала на каждом из них:

Используя закон Ома для участка цепи, напряжение на отдельных резисторов может быть вычислена следующим образом:

В итоге сумма разностей потенциалов на резисторах равна общей разности потенциалов всей цепи, нашем примере это 9В.

В частности, ряд резисторов, соединенных последовательно, можно рассматривать как делитель напряжения:

Пример № 1

Используя закон Ома, необходимо вычислить эквивалентное сопротивление серии последовательно соединенных резисторов (R1. R2, R3), а так же падение напряжения и мощность для каждого резистора:

Все данные могут быть получены с помощью закона Ома и для лучшего понимания представлены в виде следующей таблицы:

Пример № 2

Необходимо рассчитать падение напряжения на выводах «А» и «В»:

а) без подключенного резистора R3

б) с подключенным резистором R3

Как вы можете видеть, выходное напряжение U без нагрузочного резистора R3, составляет 6 вольт, но то же выходное напряжение при подключении R3 становится всего лишь 4 В. Таким образом, нагрузка, подключенная к делителю напряжения, провоцирует дополнительное падение напряжение. Данный эффект снижения напряжения может быть компенсирован с помощью потенциометра установленного вместо постоянного резистора, с помощью которого можно скорректировать напряжение на нагрузке.

Онлайн калькулятор расчета сопротивления последовательно соединенных резисторов

Чтобы быстро вычислить общее сопротивление двух и более резисторов, соединенных последовательно, вы можете воспользоваться следующим онлайн калькулятором:

Подведем итог

Когда два или несколько резисторов соединены вместе (вывод одного соединяется с выводом другого резистора) — то это последовательное соединение резисторов. Ток, протекающий через резисторы имеет одно и тоже значение, но падение напряжения на них не одно и то же. Оно определяется сопротивлением каждого резистора, которое рассчитывается по закону Ома (U = I * R).

Основы электроники. Урок №3: Последовательное и параллельное соединение резисторов

На прошлом уроке мы изучили поведение тока и напряжения в цепи последовательно соединенных резисторов.

Для напоминания вновь приведем схему последовательного соединения резисторов:

последовательного соединения резисторов

Последовательное соединение — это такое соединение, в котором отдельные элементы соединены в ряд, один за другим. Из Урок №2 мы узнали, что:

  • во всей цепи сила тока является постоянной, независимо от того, в каком месте мы его измеряем.
  • общее сопротивление — это не что иное, как сумма сопротивлений отдельно взятых резисторов:
  • сумма падений напряжений на всех резисторах равно напряжению батареи.

К каким выводам мы придем, изучив электрическую цепь, в которой резисторы соединены параллельно?

Как обычно мы начнем со схемы:

схема

Маркировка на схеме будет отвечать маркировке элементов из урока №2:

B1 – это батарея питания из 4 пальчиковых батареек типа АА

R1 – резистор 22кОм (полоски — красный/красный/оранжевый/золотой)

R2 – резистор 10кОм (полоски коричневый/черный/оранжевый/золотистый)

R3 – резистор 2,2кОм (полоски красный/красный/красный/золотой)

Каким будет общее сопротивление (RC) всех резисторов в нашей схеме? Прежде чем ответить на этот вопрос, следует отметить, что только резисторы R1 и R2 соединены друг с другом параллельно. Для начала разберемся с ними. Как уже было отмечено ранее в статье, формула расчета общего сопротивления резисторов, соединенных параллельно выглядит следующим образом:

R= (R1 * R2) / (R1 + R2)
R = (22кОм x 10кОм) / (22кОм + 10кОм)
R= 220кОм / 32кОм
R = 6,9кОм (округленно)
R = 6900 Ом

Общее сопротивление резисторов R1 и R2 составляет 6,9кОм.

Теперь давайте еще раз посмотрим на схему – резисторы R1 и R2 по отношению к резистору R3 соединены последовательно. Поэтому упрощенно схему можно изобразить следующим образом:

упрощенная схема

Мы должны иметь в виду, что при замене первоначальной схемы эквивалентной, напряжение и ток в эквивалентной части схемы будут такими же!

Возвращаясь к теме: если резисторы R1 и R2 соединены друг с другом параллельно и в тоже время последовательно с резистором R3, то достаточно суммировать общее сопротивление резисторов R1 и R2 с сопротивлением резистора R3, чтобы получить общее сопротивление цепи RC:

R C = [(R1 * R2) / (R1 + R2)] + R3
R C = R1,2 + R3
R C = 6,9кОм + 2,2кОм
R C = 9,1кОм
Rc = 9100 Ом

Теперь мы уже знаем, каким образом рассчитать общее сопротивление нашей цепи.

Следует помнить, что вычисленное значение получено на основе номинальных значений сопротивлений наших резисторов. В качестве упражнения мы предлагаем, аналогичным образом вычислить фактическое общее сопротивление схемы, предварительно измерив сопротивления всех резисторов мультиметром. У нас общее сопротивление составило 9,1кОм.

Измерим напряжение в цепи, прикладывая щуп мультиметра в различных местах:

osnovy-elektroniki-urok-3-posledovatelnoe-i-parallelnoe-soedinenie-rezistorov-5

osnovy-elektroniki-urok-3-posledovatelnoe-i-parallelnoe-soedinenie-rezistorov-6

osnovy-elektroniki-urok-3-posledovatelnoe-i-parallelnoe-soedinenie-rezistorov-7

Наша батарея имеет напряжение 6,10 вольт. Что интересно, падение напряжения на резисторах, соединенных параллельно (R1 и R2), одинаково и составляет 4,60 вольт, несмотря на то, что они имеют разное сопротивление. Падение же на резисторе R3 равно 1,49 вольт.

Получим ли мы такие же значения путем расчета? На поможет в этом закон Ома для участка цепи. Давайте проверим:

Результаты получились почти такими же.

Для расчета силы тока нам необходимо знать только напряжение батареи:

osnovy-elektroniki-urok-3-posledovatelnoe-i-parallelnoe-soedinenie-rezistorov-4

В нашей цепи источник питания выдает 6,10В. Рассчитаем силу тока в цепи:

I = U / RC
I = 6,10В / 9100 Ом
I = 0,00067А
I = 0,67мА = 670мкA

Сейчас давайте измерим, какова сила тока в отдельных точках схемы:

osnovy-elektroniki-urok-3-posledovatelnoe-i-parallelnoe-soedinenie-rezistorov-9

osnovy-elektroniki-urok-3-posledovatelnoe-i-parallelnoe-soedinenie-rezistorov-10

osnovy-elektroniki-urok-3-posledovatelnoe-i-parallelnoe-soedinenie-rezistorov-8

Батарея выдает 6,10 вольт. В замкнутой цепи ток течет с силой 670мкА. Падение напряжения для первого узла в обеих частях (R1 и R2) остается одинаковым и составляет 4,60 вольт. Тока (который мы можем представить как поток электронов) растекается на две ветви: первая ветвь обозначена как I1, а вторая как I2. В втором узле ветви I1 и I2 опять соединяются друг с другом, образуя ток I.

В этом месте мы подошли к первому закону Кирхгофа, который гласит что для любого узла электрической цепи сумма токов, втекающих в узел равна сумме токов вытекающих из этого узла.

Посмотрим, будет ли теоретический расчет соответствовать нашим измерениям:

И здесь результаты, полученные экспериментальным путем очень близки с расчетными значениями.

Подытожим сегодняшний урок в следующей таблице:

Параллельное соединение резисторов Последовательное соединение резисторов
Падение напряжения одинаковое на каждом резисторе Падение напряжения, разное на каждом резисторе, если резисторы имеют разную величину сопротивления.
Общее сопротивление:

R1,2 = (R1 * R2) / (R1 + R2)

Rc = R1 + R2

Физика

Урок 3: Последовательное и параллельное соединение резисторов

  • Видео
  • Тренажер
  • Теория

Резисторы

На прошлом уроке мы ввели понятие сопротивления. Сопротивление является основной электрической характеристикой проводников и большинства приборов.

В реальности как каждый прибор обладает своим собственным сопротивлением, так и проводники, соединяющие их. Для решений задач же мы считаем все проводники идеальными (не обладающими сопротивлением), а все сопротивление в цепи – сосредоточенным в подключенных элементах.

Практически все сопротивление цепи заключено в приборах – резисторах (рис. 1). Понятия резистор и сопротивление так тесно связаны, что их часто отождествляют, что, конечно же, неверно.

На электрической схеме резистор обозначается так (рис. 2):

Рис. 2. Обозначение резистора на электрической схеме

Отдельно взятый резистор является участком цепи, и для него справедлив закон Ома:

Перемножив силу тока, протекающего через резистор, и сопротивление резистора, можно получить значение напряжения на резисторе, или же напряжение на концах резистора.

Последовательное соединение

Для получения нужной нам силы тока гораздо удобнее подбирать необходимое сопротивление при постоянном напряжении, чем подбирать нужный источник питания. И иногда резистор нужного сопротивления нельзя достать, в таком случае необходимо соединить определенным образом несколько других резисторов (как и в случае с конденсаторами из прошлой темы). Принципиально разных соединений существует два: последовательное и параллельное. Начнем с первого.

Последовательное соединение осуществляется подключением резисторов друг за другом без разветвления проводника (рис. 3):

Рис. 3. Пример последовательного соединения

Основная задача – это понять, как связаны параметры каждого резистора в соединении с параметрами эквивалентного резистора (как будто весь блок последовательных резисторов мы заменили одним резистором )

В первую очередь такое соединение не дает никакой возможности зарядам в разном количестве проходить через разные резисторы в цепи, поэтому:

Напряжение же, напротив, будет разным. Так как работа электрического поля по переносу заряда через весь блок – это сумма работ по переносу заряда через каждый резистор:

Воспользовавшись законом Ома в последнем равенстве:

мы получим выражение для сопротивлений:

Главная проблема последовательного соединения – это то, что в случае разрыва цепи в каком-то одном месте ток перестает идти во всей цепи. Ярким примером последовательного соединения являются гирлянды (рис. 4).

Рис. 4. Лампочки гирлянд соединены последовательно (Источник)

Параллельное соединение

Параллельным называется соединение, при котором концы всех резисторов имеют общую точку – «узел» (рис. 5):

Рис. 5. Параллельное сопротивление

В данном соединении эквивалентные напряжение, сила тока и сопротивления ищутся по-другому.

Во-первых, так как концы всего блока совпадают с концами каждого резистора, все напряжения равны между собой и равны эквивалентному:

Заряд же, прошедший за единицу времени через весь блок, равен сумме зарядов, прошедших через каждый отдельный резистор в соединении. Поэтому:

Теперь, подставив в последнее равенство закон Ома:

мы получим выражение для эквивалентного сопротивления:

Стоит отметить, что в большинстве цепей применяются смешанные соединения.

На следующем уроке мы будем изучать работу и мощность электрического тока.

Список литературы

  1. Тихомирова С. А., Яворский Б. М. Физика (базовый уровень) – М.: Мнемозина, 2012.
  2. Генденштейн Л. Э., Дик Ю. И. Физика 10 класс. – М.: Илекса, 2005.
  3. Мякишев Г. Я., Синяков А. З., Слободсков Б. А. Физика. Электродинамика. – М.: 2010.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Интернет-портал «dvo.sut.ru» (Источник)
  2. Интернет-портал «go-radio» (Источник)
  3. Интернет-портал «sxemotehnika.ru» (Источник)

Домашнее задание

  1. Стр. 103: № 795–799. Физика. Задачник. 10-11 классы. Рымкевич А. П. – М.: Дрофа, 2013. (Источник)
  2. Как следует подключать одинаковые резисторы для получения минимального сопротивления?
  3. К источнику питания 48 В подключили три резистора, соединенных последовательно. Сила тока через первый – 1 А, сопротивление второго – 12 Ом, а напряжение на третьем – 18 В. Найти сопротивления первых двух резисторов.
  4. * Как следует подключать амперметр для измерения силы тока? Какое должно быть сопротивление амперметра?
  5. * Как следует подключать вольтметр для измерения напряжения? Какое должно быть сопротивление вольтметра?

Последовательное, параллельное и смешанное соединение резисторов (сопротивлений)

Все разнообразие схем построено на двух типах соединения — параллельном и последовательном. Для разных соединений действуют разные законы, что и дает возможность создания устройств с различными характеристиками. Рассмотрим последовательное и параллельное соединение резисторов.

Что такое резистор и для чего он нужен

Резистор — это радиоэлемент, который увеличивает сопротивление цепи. Ставят его обычно для того, чтобы понизить/ограничить напряжение или ток. Есть сопротивления постоянные и переменные.

Например, светодиоды требуют небольшого тока, иначе перегревается и быстро выходит из строя. Чтобы ограничить ток, перед светодиодом поставьте сопротивление. Ток в цепи станет меньше.

Для чего ставят сопротивления

Для чего нужны резисторы: для подстройки параметров питания

Постоянные сопротивления — это те, которые не меняют своего номинала в процессе работы. Если это и происходит, то считается выходом из строя.

Внешний вид резисторов переменных и постоянных

Так выглядят переменные и постоянные резисторы

Переменные резисторы, наоборот, отличаются тем, что их сопротивление можно изменять. Они имеют бегунок или поворотную ручку, при помощи которых и изменяется номинал. На основе таких устройств делают регуляторы. Например, регулятор громкости, накала греющего элемента и т.д.

Последовательное соединение сопротивлений

Последовательное соединение характеризуется тем, что элементы идут друг за другом. Конец одного подключается к началу другого. При подключении полученной цепочки к источнику тока получается кольцо.

Пример последовательного соединения

Лампы накаливания соединенные последовательно, можно рассматривать как сопротивления

Теоретическая часть

Последовательное соединение характерно тем, что через все элементы протекает ток одинаковой силы. То есть, если цепочка состоит из двух резисторов R1 и R2 (как на рисунке ниже), то ток протекающий через каждое из них и любую другую часть цепи будет одинаковой (I = I1 = I2).

Схема последовательного соединения

Последовательно соединенные сопротивления. I1 — ток протекающий через резистор R1, I2 — ток протекающий через резистор R2

Суммарное сопротивление всей цепи последовательно соединенных резисторов считается как сумма сопротивлений всех ее элементов. То есть, номиналы складывают.

R = R1 + R2 — это и есть формула расчета сопротивления при последовательном соединении резисторов. Если элементов больше двух, будет просто больше слагаемых.

Еще одно свойство последовательного соединения — на каждом элементе напряжение отличается. Ток в цепи одинаковый, а напряжение на резисторе зависит от его номинала.

Примеры расчета

Давайте рассмотрим пример. Цепь представлена на рисунке выше. Есть источник тока и два сопротивления. Пусть R1=1,2 кОм, R2= 800 Ом, а ток в цепи 2 А. По закону Ома U = I * R. Подставляем наши значения:

  • U1 = R1 * I = 1200 Ом * 2 А = 2400 В;
  • U2 = R2 * I = 800 Ом * 2А = 1600 В.

Общее напряжение цепи считается как сумма напряжений на резисторах: U = U1 + U2 = 2400 В + 1600 В = 4000 В.

Иллюстрация последовательного соединения

Так понятнее, что такое последовательное соединение

Полученную цифру можно проверить. Для этого найдем суммарное сопротивление цепи и умножим его на ток. R = R1 + R2 = 1200 Ом + 800 Ом = 2000 Ом. Если подставить в формулу напряжения при последовательном соединении сопротивлений, получаем: U = R * I = 2000 Ом * 2 А = 4000 В. Получаем, что общее напряжение данной цепи 4000 В.

А теперь посмотрите на схему. На первом вольтметре (возле резистора R1) показания будут 2400 В, на втором — 1600 В. При этом напряжение источника питания — 4000 В.

Параллельное соединение резисторов

Параллельное соединение — это когда входы нескольких деталей соединяются в одной точке. Точно так же — в одну точку — соединяют их выходы.

Что такое параллельное соединение

Так выглядит параллельное соединение на схеме и в реальности

Теория и законы параллельного соединения

Если посмотреть на изображение параллельного соединения, заметно, что ко всем элементам прилагается одинаковое напряжение. То есть, при параллельном соединении резисторов, на каждом из них будет одинаковое напряжение.

Получается, что ток разделяется на несколько «ручейков». То есть, при параллельном соединении резисторов сила тока, протекающего через каждый из элементов, отличается. I = I1+I2+I3. И зависит сила тока (согласно тому же закону Ома) от сопротивления каждого участка цепи. В случае с параллельным соединением резисторов — от их номинала.

Схема параллельного соединения резисторов

Так выглядит параллельное соединение резисторов на схеме

Общее сопротивление участка цепи при таком соединении становится ниже. Его высчитывают по формуле:

Такая форма хоть и понятна, но неудобна. Формула расчета сопротивления параллельно подключенных резисторов получается тем сложнее, чем больше элементов соединены параллельно. Но больше двух-трех редко кто объединяет, так что на практике достаточно знать только две формулы приведенные ниже.

Формулы расчета: два резистора соединены параллельно и три резистора соединены параллельно

Формулы расчета сопротивления при параллельном подключении двух и трех резисторов

Если подставить значения в эти формулы, то заметим, что результат будет меньше, чем сопротивление резистора с наименьшим номиналом. Это стоит запомнить: результирующее сопротивление включенных параллельно резисторов будет ниже самого маленького номинала.

Примеры расчета параллельного соединения сопротивлений

Давайте сначала рассчитаем параллельное соединение двух резисторов разного номинала и посмотрим что получится.

  • Соединили параллельно 150 Ом и 100 Ом. Считаем результирующее: 150*100 / (150+100) = 15000/250 = 60 Ом.
  • Если соединить 150 Ом и 50 Ом, получим: 150*50 / (150+50) = 7500 / 200 = 37,5 Ом.

Как видим, в обоих случаях результат оказывается меньше чем самый низкий номинал соединенных деталей. Этим и пользуются, если в наличии нет сопротивления небольшого номинала. Проблема только в том, что подбирать сложновато: надо каждый раз считать используя калькулятор.

Формула дял соединения резисторов

Как высчитывать сопротивление составных резисторов

Возможно, вам будет проще, если знать, что соединив два одинаковых резистора параллельно, получим результат в два раза меньше. Например, соединив параллельно два резистора по 100 Ом получим составное сопротивление 50 Ом. Проверим? Считаем: 100*100 / (100+100) = 10000 / 200 = 50 Ом.

Пример параллельного подключения

Еще один пример с лампочками

При соединении параллельно трех резисторов, считать приходится больше, так как формула сложнее. Но картина не отличается:

  • Если подключить параллельно 150 Ом, 100 Ом и 50 Ом, результирующее будет 27,3 Ом.
  • Попробуем с более низкими номиналами. Если параллельно включены 20 Ом, 15 Ом и 10 Ом. Получим результирующее сопротивление 4,61 Ом.

Вот вам подтверждение правила. Суммарное сопротивление параллельно соединенных резисторов меньше чем самый низкий номинал.

Смешанное соединение

Как быть, если в схеме есть и параллельное, и последовательное соединение резисторов? В таком случае считают общее сопротивление по участкам. Можно при этом перерисовывать схему, заменяя составные сопротивления на один «прямоугольник», но проставляя над ним высчитанный результат.

Расчет сопротивления цепи при смешанном соединении резисторов

Пример расчета сопротивления при смешанном соединении резисторов. Рассматриваем исходную схему как совокупность параллельных и последовательных соединений

Шаг 1. Нашли общее сопротивление последовательно соединенных резисторов R3 и R4:

R3-4 = 3 кОм + 3 кОм = 6 кОм;

Шаг 2. Рассчитали сопротивление параллельно соединенных резисторов R2 и R3-4:

R2-4 = 3 кОм * 6 кОм / (3 кОм + 6 кОм) = 18 кОм/9 кОм = 2 кОм;

Шаг 3. Рассчитали общее сопротивление последовательно соединенных резисторов R1 и R2-4:

R1-4 = R1 + R2-4 = 1 кОм + 2 кОм = 3 кОм.

Практическое применение параллельного и последовательного соединения резисторов

Для чего практически можно использовать параллельное и последовательное соединение резисторов? Случается, что при ремонте электронной аппаратуры, не всегда в наличии сопротивление нужного номинала. Ехать в магазин за одним копеечным элементом — накладно. Вот тут и могут пригодиться составные резисторы. Просто надо последовательно или параллельно соединить их, подобрав требуемый номинал.

Применение последовательного и параллельного соединения резисторов

Последовательное и параллельное соединение резисторов применяют для подбора требуемого номинала. Контролировать точное значение получившегося сопротивления можно при помощи цифрового мультиметра

При соединении резисторов, их ножки первоначально скручивают. Какой стороной разворачивать сопротивление — неважно (в отличие от диодов, резисторы одинаково пропускают ток в обоих направлениях). На концах скрутку слегка обжимают плоскогубцами, затем пропаивают. Следите за тем, чтобы корпуса были друг от друга подальше — так они будут лучше охлаждаться при работе.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *