Электрическая схема цифрового вольтметра и амперметра
В статье представлены рабочие электрические схемы цифровых вольтметра и амперметра, а также схемы их подключения, что позволит создать, подключить и наладить приборы самостоятельно.
- Микросхема СА3162Е для вольтметра и амперметра
- Принципиальная схема вольтметра
- Принципиальная схема амперметра
- Схема подключения
- Рекомендации по подбору комплектующих
- Налаживание цифрового вольтметра и амперметра
- Видео о создании
В старых лабораторных блоках питания были стрелочные индикаторы, но сейчас используются цифровые. Сейчас радиолюбители чаще всего делают такие приборы на основе микроконтроллера или микросхем АЦП вроде КР572ПВ2, КР572ПВ5.
Микросхема СА3162Е для цифровых вольтметра и амперметра
Существуют и другие микросхемы аналогичного действия. Например, микросхема СА3162Е предназначена для создания измерителя аналоговой величины с отображением результата на трехразрядном цифровом индикаторе.
Микросхема СА3162Е представляет собой АЦП с максимальным входным напряжением 999 mV (при этом показания «999») и логической схемой, которая выдает сведения о результате измерения в виде трех поочередно меняющихся двоично-десятичных четырехразрядных кодов на параллельном выходе и трех выходах для опроса разрядов схемы динамической индикации.
Чтобы получить законченный прибор, нужно добавить дешифратор для работы на семисегментный индикатор и сборку из трех семисегментных индикаторов, включенных в матрицу для динамической индикации, а также, трех управляющих ключей.
Тип индикаторов может быть любым — светодиодные, люминесцентные, газоразрядные, жидкокристаллические, все зависит от схемы выходного узла на дешифраторе и ключах. Здесь используется светодиодная индикация на табло из трех семисегментных индикаторов с общими анодами.
Индикаторые включены по схеме динамической матрицы, то есть, все их сегментные (катодные) выводы включены параллельно. А для опроса, то есть, последовательного переключения, используются общие анодные выводы.
Принципиальная схема вольтметра
Принципиальная схема цифрового вольтметра до 100В на микросхемах СА3162, КР514ИД2
Выше можно увидеть электрическую схему вольтметра, измеряющего напряжение от 0 до 100V (0. 99,9V). Измеряемое напряжение поступает на выводы 11–10 (вход) микросхемы D1 через делитель на резисторах R1–R3.
Конденсатор СЗ исключает влияние помех на результат измерения. Резистором R4 устанавливают показания прибора на ноль, при отсутствии входного напряжения А резистором R5 выставляют предел измерения так, чтобы результат измерения соответствовал реальному, то есть, можно сказать, им калибруют прибор.
Теперь о выходах микросхемы. Логическая часть СА3162Е построена по логике ТТЛ, а выходы еще и с открытыми коллекторами. На выходах «1-2-4-8» формируется двоичнодесятичный код, который периодически сменяется, обеспечивая последовательную передачу данных о трех разрядах результата измерения.
Если используется дешифратор ТТЛ, как, например, КР514ИД2, то его входы непосредственно подключаются к данным входам D1. Если же будет применен дешифратор логики КМОП или МОП, то его входы будет необходимо подтянуть к плюсу при помощи резисторов. Это нужно будет сделать, например, если вместо КР514ИД2 будет использован дешифратор К176ИД2 или CD4056.
Выходы дешифратора D2 через токоограничивающие резисторы R7–R13 подключены к сегментным выводам светодиодных индикаторов Н1–НЗ. Одноименные сегментные выводы всех трех индикаторов соединены вместе. Для опроса индикаторов используются транзисторные ключи VT1–VT3, на базы которых подаются команды с выходов Н1–НЗ микросхемы D1.
Эти выводы тоже сделаны по схеме с открытым коллектором. Активный ноль, поэтому используются транзисторы структуры р-п-р.
Принципиальная схема амперметра
Принципиальная схема цифрового амперметра до 10А и более на микросхемах СА3162, КР514ИД2
Схема практически такая же, за исключением входа. Здесь вместо делителя стоит шунт на пятиваттном резисторе R2 сопротивлением 0,1 От. При таком шунте прибор измеряет ток до 10А (0. 9.99А). Установка на ноль и калибровка, как и в первой схеме, осуществляется резисторами R4 и R5.
Выбрав другие делители и шунты, можно задать другие пределы измерения, например, 0. 9.99V, 0. 999mA, 0. 999V, 0. 99.9А. Это зависит от выходных параметров того лабораторного блока питания, в который будут установлены эти индикаторы. Также, на основе данных схем можно сделать и самостоятельный прибор для измерения напряжения и тока (настольный мультиметр).
При этом нужно учесть, что даже используя жидкокристаллические индикаторы прибор будет потреблять существенный ток, так как логическая часть СА3162Е построена по ТТЛ-логике. Поэтому, хороший прибор с автономным питанием вряд ли получится. А вот автомобильный вольтметр (рис.4) выйдет неплохой.
Питаются приборы постоянным стабилизированным напряжением 5V. В источнике питания, в который будут они установлены, необходимо предусмотреть наличие такого напряжения при токе не ниже 150 mA.
Подключение прибора
На рисунке 3 показана схема подключения измерителей в лабораторном источнике.
Схема подключения вольтметра и амперметра в лабораторном источнике
Ниже отражена схема подключения измерителей в лабораторном источнике:
Схема подключения измерителей в лабораторном источнике
Самодельный автомобильный вольтметр на микросхемах
Рекомендации по подбору комплектующих для монтажа вольтметра и амперметра
Пожалуй, самое труднодоставаемое — это микросхемы СА3162Е. Из аналогов нам известна только NTE2054. Возможно есть и другие аналоги. С остальным значительно проще. Как уже сказано, выходную схему можно сделать на любом дешифраторе и соответствующих индикаторах. Например, если индикаторы будут с общим катодом, то нужно КР514ИД2 заменить на КР514ИД1 (цоколевка такая же), а транзисторы VТ1–VТЗ перетащить вниз, подсоединив их коллектора к минусу питания, а эмиттеры — к общим катодам индикаторов. Можно использовать дешифраторы КМОП-логики, подтянув их входы к плюсу питания при помощи резисторов.
Налаживание цифрового вольтметра и амперметра
В общем-то оно совсем несложное. Начнем с вольтметра. Сначала замкнем между собой выводы 10 и 11 D1, а подстройкой R4 выставим нулевые показания. Затем, убираем перемычку, замыкающую выводы 11–10 и подключаем к клеммам «нагрузка» образцовый прибор, например, мультиметр.
Регулируя напряжение на выходе источника, резистором R5 настраиваем калибровку прибора так, чтобы его показания совпадали с показаниями мультиметра. Далее налаживаем амперметр. Сначала, не подключая нагрузку, регулировкой резистора R5 устанавливаем его показания на ноль. Теперь потребуется постоянный резистор сопротивлением 20 От и мощностью не ниже 5W.
Устанавливаем на блоке питания напряжение 10V и подключаем этот резистор в качестве нагрузки. Подстраиваем R5 так чтобы амперметр показал 0,50 А.
Можно выполнить калибровку и по образцовому амперметру, но нам показалось удобнее с резистором, хотя конечно на качество калибровки очень влияет погрешность сопротивления резистора.
Таким же образом можно сделать и автомобильный вольтметр:
Самодельный автомобильный вольтметр на микросхемах
От первой схемы эта отличается только входом и схемой питания. Такой прибор теперь питается от измеряемого напряжения, то есть измеряет напряжение, поступающее на него как питающее.
Напряжение от бортовой сети автомобиля через делитель R1-R2-R3 поступает на вход микросхемы D1. Параметры этого делителя такие же как в первой схеме, то есть для измерения в пределах 0. 99.9V.
Но в автомобиле напряжение редко бывает более 18V (больше 14,5V уже неисправность). И редко опускается ниже 6V, разве только падает до нуля при полном отключении. Поэтому прибор реально работает в интервале 7. 16V. Питание 5V формируется из того же источника, с помощью стабилизатора А1.
Видео о создании цифрового вольтметра своими руками:
Как собрать амперметр и вольтметр
Ампервольтметр из Поднебесной. Лабораторная работа.
Автор: Антоколь
Опубликовано 14.05.2013
Создано при помощи КотоРед.
В Интернет-магазинах Китая доступны недорогие цифровые вольтметры с использованием трехразрядных цифровых светодиодных индикаторов.
Вольтметры попадались двух типоразмеров: 48 x 30 x 22мм и 36.6 х 14.8 х12мм.
Более крупный выполнен в черном пластмассовом корпусе и просто устанавливается в окно, вырезанное в передней панели блока питания. Маленький вольтметр бескорпусной и крепится за «ушки» печатной платы.
Питаются приборы постоянным током при напряжении от 4 до 30 В (через встроенный интегральный стабилизатор) и измеряют постоянное напряжение до 30 или 99,9 В.
Подробные характеристики вольтметров выложены на сайтах продавцов. На одном из сайтов приводится принципиальная схема одного из таких вольтметров.
Вольтметр собран на микроконтроллере STM8. В приведенной схеме входной делитель напряжения состоит из последовательно соединённых резисторов R1 и R2 (390 кОм и 10 кОм). Нетрудно посчитать, что при подаче 1 В на вход делителя на измерительный вход процессора подается напряжение 0,025 В. (Ток делителя I=U:R = 1: (390k+10k)=0,0025 mA; падение напряжения на R2=I*R=0,0025 mA * 10k= 0,025B).
Если в блоке питания в цепь выходного тока поставить измерительный резистор величиной 0,025 Ома, то при протекании по нему тока в 1А, на измерительном резисторе упадет напряжение 0,025 В. И если это напряжение подать на R2, то индикатор вольтметра покажет единицу (1 Ампер). Таким образом, вольтметр превратился в амперметр.
Можно установить тумблер и переключать измеритель в режим вольтметра или амперметра по приводимой ниже схеме. Коммутировать приходится три цепи:
— штатный вход вольтметра;
— дополнительный вход измерителя (измерительный вход процессора);
— общий провод вольтметра.
Для того, чтобы использовать в качестве переключателя двухполюсный тумблер, пришлось пойти на некоторое ухищрение – добавить «свой» резистор Rдоб 330кОм в цепи входного делителя напряжения. Штатный вход вольтметра при этом не используется и не коммутируется.
На схеме показано включение в «минусовую» цепь источника питания. Так Rизмер включается в импульсных (компьютерных) блоках питания (при их переделке в различные блоки питания, используемые для радиолюбительских целей), где этот измерительный резистор одновременно используется как датчик тока в схеме регулировки выходного тока.
Вывод «-Uпит», показанный на схеме, никуда не подключается, «минус» питания прибор получает через переключатель измерительной цепи. Поскольку при этом коммутируется «минусовой» провод питания вольтметра, то в момент переключения индикаторы прибора кратковременно гаснут.
Следует учесть, что при встраивании измерителя в лабораторный блок питания, прибор начнет работать только при достижении минимального напряжения на его выходе около 4 Вольт. Для зарядного аккумуляторного устройства это несущественно. Для лабораторного блока питания измеритель придется запитать от автономного источника питания, гальванически не связанного с блоком питания.
Решения могут быть различные – выпрямители на отдельной обмотке на трансформаторе, на отдельном маленьком трансформаторе от, так называемых, «адаптеров» питания, плата из телефонной зарядки или просто подходящая батарейка.
В принципе, измерительный резистор Rизмер можно включить и в «плюсовую» цепь блока питания с учетом того, что при этом вольметр-амперметр также придется «запитать» от автономного источника питания, гальванически не связанного с блоком питания (иначе на измерительный вход процессора в режиме измерения тока подается весь потенциал выходного напряжения и процессор выйдет из строя).
При коротком замыкании выходных клемм источника питания, при «переполюсовке» подключения аккумуляторной батареи к зарядному устройству (если выпрямитель собран по мостовой схеме) через измерительный резистор до сгорания защитного предохранителя протекает большой ток короткого замыкания и на резисторе выделяется импульс напряжения, который может повредить процессор.
На первый взгляд, видны два решения по защите процессора.
Первый («организационный» и наиболее простой) – вместо тумблера, переключающего измеритель в режимы «вольтметр» — «амперметр» установить не фиксируемую кнопку и ток измерять при нажатом состоянии кнопки. Так как «переполюсовка» и короткое замыкание происходят чаще всего при подключении-отключении нагрузки и руки оператора заняты этим процессом, то кнопка переключения измерителя будет в отжатом состоянии «вольтметр» и прибор не пострадает.
Второй – схемотехнический. Установить параллельно измерительному резистору (входу измерителя) быстродействующее электронное устройство, защищающее от превышения допустимого напряжения на входе измерительного входа процессора, например, супрессор или стабилитрон.
Мне попадались вольтметры с делителем 330 кОм и 10 кОм. Поскольку в качестве измерительного резистора в схеме переделанного компьютерного блока питания у меня уже использовался стандартный 5-тиВаттный резистор 0,1 Ома в керамическом корпусе, то падение напряжения на нем было слишком большим для подачи на процессор. Пришлось параллельно измерительному резистору подключить многооборотный малогабаритный потенциометр («под руку подвернулся» на 100 Ом) и по «образцовому» тестеру выставить показания на индикаторе.
Этот способ можно использовать и в случае применения самодельного некалиброванного измерительного резистора.
В продаже имеются вольтметры, позиционируемые изготовителем как «вольтметры для встраивания на панель автомобиля для измерения напряжения бортовой сети» с верхним измеряемым пределом 24В. У них всего два вывода (черный «минус» и красный «плюс»). В этих вольтметрах вход делителя соединен с «плюсом» питания печатным проводником, который легко перерезать. В таком вольтметре делитель стоит 91 кОм и 10 кОм. То есть в качестве измерительного резистора хорошо подходит 5-Ваттный резистор в керамическом корпусе номиналом 0,1 Ом.
Вольтметры различных изготовителей отличаются принципиальными схемами и применяемыми процессорами, но принцип их использования в качестве амперметра остается прежним.
Ниже по тексту приведены фотоснимки плат вольтметров, попавших в руки автора. На них указано расположение резисторов входного делителя и место входа измерителя.
«Большой» вольтметр с тремя выводами (маркировка на плате отсутствует).
«Большой» вольтметр на плате YB27_v1.4.
Схема входного делителя напряжения с потенциометром. Нумерация элементов условная, не совпадающая с маркировкой на печатной плате. Стабилитрон VD2 – дополнительно устанавливаемый для защиты входа процессора от превышения напряжения на нем.
Внешний вид платы
«Маленький» вольтметр на плате V20D-2P-1.1. Схема входного делителя напряжения с потенциометром.
В заключение фотоснимок устройства для зарядки аккумуляторов, изготовленного из компьютерного блока питания со встроенным вольтметром-амперметром. Верхний блок — зарядное устройство, нижний — электронная нагрузка.
Буду рад, если кому-нибудь из коллег-радиолюбителей материалы лабораторной работы пригодятся. Удачи!
Как собрать амперметр и вольтметр
Амперметр и вольтметр на ICL7107CPL (КР572ПВ2) для лабораторного блока питания.
Автор: Александр Минченко, alexandrminchenko@yandex.ru
Опубликовано 19.02.2013
Создано при помощи КотоРед.
Идея и схема не нова, но я хочу предложить оригинальную конструкцию. Схема практически взята с описания ICL7107CPL.
На просторах интернета была найдена статья, в которой я нашел фото готового устройства с Т-образной печатной платой вольтметра. Идея мне сразу понравилась тем, что отсутствует жгут проводов между основной платой и платой с индикацией.
Затем, не смотря на всю более менее компактность, я решил использовать по делу свободное место под микросхемой и развёл туда почти все элементы схемы.
Получилось очень даже компактно. Это получился мой первый вариант.
Повертевши плату в руках, прикинув место расположения в корпусе, я понял, что при установке двух таких плат, амперметра и вольтметра, внутреннее пространство для монтажа уменьшится не в мою пользу. Корпус большего размера мне не захотелось приобретать, тогда пришла мысль второго варианта сборки платы устройства – «сэндвич».
При сборке второго варианта платы в ход пошли ножки резисторов и конденсаторов, а также шестигранные стойки из плотного капрона с внутренней сквозной резьбой М3, втулки из детского набора для плетения всяких фенечек (2000шт. в упаковке, по цене 3$) и небольшой листик плёнки самоклейки матово-белого цвета (фирмы Oracal). На фото показана очерёдность сборки конструкции. В зависимости от количества диодов в схеме 2-3шт. можно скорректировать яркость свечения индикаторов. Я установил 3шт. в вольтметре и 2шт в амперметре (просто мне красный резал по глазам), вместо третьего установил перемычку.
Кто будет изготавливать платы без ЛУТ технологии как я, может столкнутся с проблемой рисования лаком прямоугольных площадок (под пайку перемычек или спайку Т-платы) с одинаковыми зазорами. Я делал так, печатал рисунок, затем приклеивал его к текстолиту с стороны меди и при помощи металлической линейки канцелярским ножом делал прорези. Между прорезями, после снятия бумаги и зачистки, лак очень хорошо заливается, не вытекая за границы.
Миниатюрный вольтметр-амперметр
UPD. заметил сразу несколько минусов своей конструкции.
Вроде все поправил, кто надумает повторять отпишитесь.
И снова простейшая в изготовлении вещица, встречайте!
Миниатюрный вольтметр-амперметр на Тини13 и дисплее от Nokia1110i
Собирается буквально на коленке из подручных материалов)
Самым долгим было систематизировать информацию и собрать все варианты в кучу, из этой кучи родилась своя печатная плата и через день сам приборчик)
Автора прошивки ищем на сайте хотя можете все для изготовления взять у меня в архиве, тем более внятной и нормальной печатки я там так и не нашел)
Измеряет постоянное напряжение до от 2,5в-100В, ток до 10А. Максимальные значения доступны при использовании токового шунта на подходящий ток и отдельном питании мозгов вольтметра.
ВНИМАНИЕ при напряжении питания более 20в вольтметру требуется отдельный стабилизатор напряжения для питания самой схемы и дисплея.
Попутно показывает потребляемую мощность.
Для изготовления смотрим список деталей, печатаем плату, паяем и прошиваем.
В ближайших планах сделать вольтметр и двухзонный термометр в автомобиль, на таком-же дисплее.
Исходники по ссылке