1.Виды и методы электрических измерений.
Измерение – процесс нахождения опытным путем значения физической величины с помощью специальных технических средств (средств измерения).
Существует два вида измерений:
При прямых измерениях искомое значение физической величины определяют непосредственно по показанию прибора. К ним относятся: измерение тока амперметром, электроэнергии счетчиком, напряжения вольтметром и др.
При косвенных измерениях искомое значение физической величины находят на основании известной зависимости между этой величиной и величинами, полученными в результате прямых измерений. Например, измерив ток и напряжение, можно найти величину электрического сопротивления.
Различают два основных метода измерений:
– метод непосредственной оценки: значение измеряемой величины определяют непосредственно по отсчетному устройству измерительного прибора (например, значение тока – по амперметру). Этот метод прост, но имеет сравнительно невысокую точность;
– метод сравнения, при котором измеряемая величина сравнивается с величиной, воспроизводимой мерой. Этот метод точнее, но процесс измерения более сложный.
Метод сравнения имеет несколько разновидностей:
– нулевой метод, при котором результирующий эффект взаимодействия сравниваемых величин на измерительный прибор доводят до нуля, например, измерения электрического сопротивления с помощью уравновешенного моста;
– дифференциальный метод: на измерительный прибор воздействует разность измеряемой величины и величины, воспроизводимой мерой, например, измерение электрического сопротивления с помощью неуравновешенного моста;
– метод замещения, при котором измеряемую величину замещают известной величиной, воспроизводимой мерой и изменяя эту величину, добиваются такого же показания прибора, как и при действии измеряемой величины.
В связи с тем, что абсолютно точных приборов нет, каждое средство измерения характеризуется погрешностью.
Погрешности делятся на абсолютные, относительные и приведенные.
Абсолютная погрешность Δ – это разность между показанием прибора А и действительным значением измеряемой величины: .
Относительная погрешность δ представляет собой отношение абсолютной погрешности к действительному значению измеряемой величины А. Обычно относительная погрешность выражается в процентах: .
Приведенная погрешность γ представляет собой отношение абсолютной погрешности Δ к нормирующему значению АN измеряемой величины: .
Нормирующее значение обычно принимают равным верхнему пределу измерения для данного прибора.
По характеру проявления погрешности делятся на:
– систематические – сохраняются постоянными или изменяются по определенному закону, их значение всегда можно учесть, если ввести соответствующие поправки;
– случайные – изменяются по случайному закону, их нельзя исключить, но можно уменьшить проведением многократных измерений;
– грубые погрешности (промахи) – существенно превышают ожидаемые при данных условиях измерения. Возникают из-за человеческого фактора или неучтенных внешних условий. Выявляются только при многократных измерениях. Их исключают в процессе обработки результатов.
Класс точности прибора показывает допустимое значение погрешности прибора, выраженное в процентах, и указывается на лицевой панели прибора. По стандарту класс прибора может быть: 0,05; 0,1; 0,2; 0,5; 1,0; 1,5; 2,5; 4. Цифра, которая обозначает класс точности, определяет наибольшую положительную или отрицательную приведенную погрешность данного прибора. Например, для класса точности 0,5 приведенная погрешность составит ±0,5%.
Электрические измерения
Объектами электрических измерений являются все электрические и магнитные величины: ток, напряжение, мощность, энергия, магнитный поток и т. д. Определение значений этих величин необходимо для оценки работы всех электротехнических устройств, чем и определяется исключительная важность измерений в электротехнике.
Электроизмерительные устройства широко применяются и для измерения неэлектрических величин (температуры, давления и т. д.), которые для этой цели преобразуются в пропорциональные им. электрические величины. Такие методы измерений известны под общим названием электрических измерений неэлектрических величин. Применение электрических методов измерений дает возможность относительно просто передавать показания приборов на дальние расстояния (телеизмерение), управлять машинами и аппаратами (автоматическое регулирование), выполнять автоматически математические операции над измеряемыми величинами, просто записывать (например, на ленту) ход контролируемых процессов и т. д. Таким образом, электрические измерения необходимы при автоматизации самых различных производственных процессов.
В Советском Союзе развитие электроприборостроения идет параллельно с развитием электрификации страны и особенно быстро после Великой Отечественной войны. Высокое качество аппаратуры и необходимая точность измерительных приборов, находящихся в эксплуатации, гарантируются государственным надзором за всеми мерами и измерительными приборами.
12.2 Меры, измерительные приборы и методы измерения
Измерение любой физической величины заключается в ее сравнении посредством физического эксперимента с принятым за единицу значением соответствующей физической величины. В общем случае для такого сопоставления измеряемой величины с мерой — вещественным воспроизведением единицы измерения — нужен прибор сравнения. Например, образцовая катушка сопротивления применяется как мера сопротивления совместно с прибором сравнения — измерительным мостом.
Измерение существенно упрощается, если есть прибор непосредственного отсчета (называемый также показывающим прибором), показывающий численное значение измеряемой величины непосредственно на шкале или циферблате. Примерами могут служить амперметр, вольтметр, ваттметр, счетчик электрической энергии. При измерении таким прибором мера (например, образцовая катушка сопротивления) не нужна, но мера была нужна при градуировании шкалы этого прибора. Как правило, у приборов сравнения выше точность и чувствительность, но измерение приборами непосредственного отсчета проще, быстрее и дешевле.
В зависимости от того, как получаются результаты измерения, различают измерения прямые, косвенные и совокупные.
Если результат измерения непосредственно дает искомое значение исследуемой величины, то такое измерение принадлежит к числу прямых, например измерение тока амперметром.
Если измеряемую величину приходится определять на основании прямых измерений других физических величин, с которыми измеряемая величина связана определенной зависимостью, то измерение относится к косвенным. Например, косвенным будет измерение, сопротивления элемента электрической цепи при измерении напряжения вольтметром и тока амперметром.
Следует иметь в виду, что при косвенном измерении возможно существенное снижение точности по сравнению с точностью при прямом измерении из-за сложения погрешностей прямых измерений величин, входящих в расчетные уравнения.
В ряде случаев конечный результат измерения выводился из результатов нескольких групп прямых или косвенных измерений отдельных величин, причем исследуемая величина зависит от измеренных величин. Такое измерение называют совокупным. Например, к совокупным измерениям относится определение температурного коэффициента электрического сопротивления материала на основании измерения сопротивления материала при различных температурах. Совокупные измерения характерны для лабораторных исследований.
В зависимости от способа применения приборов и мер принято различать следующие основные методы измерения: непосредственного измерения, нулевой и дифференциальный.
При пользовании методом непосредственного измерения (или непосредственного отсчета) измеряемая величина определяется путем
непосредственного отсчета показания измерительного прибора или непосредственного сравнения с мерой данной физической величины (измерение тока амперметром, измерение длины метром). В этом случае верхним пределом точности измерения является точность измерительного показывающего прибора, которая не может быть очень высокой.
При измерении нулевым методом образцовая (известная) величина (или эффект ее действия) регулируется и значение ее доводится до равенства со значением измеряемой величины (или эффектом ее действия). При помощи измерительного прибора в этом случае лишь добиваются равенства. Прибор должен быть высокой чувствительности, и он именуется нулевым прибором или нуль-индикатором. В качестве нулевых приборов при постоянном токе обычно применяются магнитоэлектрические гальванометры (см. § 12.7), а при переменном токе — электронные нуль-индикаторы. Точность измерения нулевым методом очень высока и в основном определяется точностью образцовых мер и чувствительностью нулевых приборов. Среди нулевых методов электрических измерений важнейшими являются мостовые и компенсационные.
Еще большая точность может быть достигнута при дифференциальных методах измерения. В этих случаях измеряемая величина уравновешивается известной величиной, но до полного равновесия измерительная цепь не доводится, а путем прямого отсчета измеряется разность измеряемой и известной величин. Дифференциальные методы применяются для сравнения двух величин, значения которых мало отличаются один от другого.
Электроизмерительные приборы
Электроизмерительные приборы — класс устройств, применяемых для измерения различных электрических величин. В группу электроизмерительных приборов входят также кроме собственно измерительных приборов и другие средства измерений — меры, преобразователи, комплексные установки.
Амперметр переменного тока
Вольтметр переменного тока
Мультиметр ( тестер )
Применение
Средства электрических измерений широко применяются в энергетике, связи, промышленности, на транспорте, в научных исследованиях, медицине, а также в быту — для учёта потребляемой электроэнергии. Используя специальные датчики для преобразования неэлектрических величин в электрические, электроизмерительные приборы можно использовать для измерения самых разных физических величин, что ещё больше расширяет диапазон их применения.
Классификация
- Наиболее существенным признаком для классификации электроизмерительной аппаратуры является измеряемая или воспроизводимая физическая величина, в соответствии с этим приборы подразделяются на ряд видов:
- амперметры — для измерения силы электрического тока;
- вольтметры — для измерения электрического напряжения;
- омметры — для измерения электрического сопротивления;
- мультиметры (иначе тестеры, авометры) — комбинированные приборы
- частотомеры — для измерения частоты колебаний электрического тока;
- магазины сопротивлений — для воспроизведения заданных сопротивлений;
- ваттметры и варметры — для измерения мощности электрического тока;
- электрические счётчики — для измерения потреблённой электроэнергии
- и множество других видов
- по назначению — измерительные приборы, меры, измерительные преобразователи, измерительные установки и системы, вспомогательные устройства;
- по способу представления результатов измерений — показывающие и регистрирующие ( в виде графика на бумаге или фотоплёнке, распечатки, либо в электронном виде);
- по методу измерения — приборы непосредственной оценки и приборы сравнения;
- по способу применения и по конструкции — щитовые (закрепляемые на щите или панели), переносные и стационарные;
- по принципу действия:
- электромеханические:
- магнитоэлектрические;
- электромагнитные;
- электродинамические;
- электростатические;
- ферродинамические;
- индукционные;
- магнитодинамические;
Графические обозначения по ГОСТ 23217
Обозначения
В зарубежных странах обозначения средств измерений устанавливаются предприятиями-изготовителями, в России (и частично в других странах СНГ) традиционно принята унифицированная система обозначений, основанная на принципах действия электроизмерительных приборов. В состав обозначения входит прописная русская буква, соответствующая принципу действия прибора, и число — условный номер модели. Например: С197 — киловольтметр электростатический. К обозначению могут добавляться буквы М (модернизированный), К (контактный) и другие, отмечающие конструктивные особенности или модификации приборов.
- В — приборы вибрационного типа (язычковые)
- Д — электродинамические приборы
- Е — измерительные преобразователи
- И — индукционные приборы
- К — многоканальные и комплексные измерительные установки и системы
- Л — логометры
- М — магнитоэлектрические приборы
- Н — самопишущие приборы
- П — вспомогательные измерительные устройства
- Р — меры, измерительные преобразователи, приборы для измерения параметров элементов электрических цепей
- С — электростатические приборы
- Т — термоэлектрические приборы
- У — измерительные установки
- Ф — электронные приборы
- Х — нормальные элементы
- Ц — приборы выпрямительного типа
- Ш — измерительные преобразователи
- Щ — ?
- Э — электромагнитные приборы
История
- В 1733—1737 гг французский учёный Ш. Дюфе создал электроскоп. В 1752—1754 гг его работы продолжили М. В. Ломоносов и Г. В. Рихман в процессе исследований атмосферного электричества. В середине восьмидесятых годов XVIII века Ш. Кулон изобрёл крутильные весы — электростатический измерительный прибор.
- В первой половине XIX века, когда уже были заложены основы электродинамики (законы Био — Савара и Фарадея, принцип Ленца), построены гальванометры и некоторые другие приборы, изобретены основные методы электрических измерений — баллистический (Э. Ленц, 1832 г.), мостовой (Кристи, 1833 г.), компенсационный (И. Поггендорф, 1841)
- В середине XIX века отдельные ученые в разных странах создают меры электрических величин, принимаемые ими в качестве эталонов, производят измерения в единицах, воспроизводимых этими мерами, и даже проводят сличение мер в разных лабораториях. В России в 1848 г. академик Б. С. Якоби предложил в качестве эталона единицы сопротивления применять медную проволоку длиной 25 футов (7,61975 м) и весом 345 гран (22,4932 г), навитую спирально на цилиндр из изолирующего материала. Во Франции эталоном единицы сопротивления служила железная проволока диаметром в 4 мм и длиной в 1 км (единица Бреге). В Германии таким эталоном являлся столб ртути длиной 1 м и сечением 1 мм² при 0° С
- Вторая половина XIX века была периодом роста новой отрасли знаний — электротехники. Создание генераторов электрической энергии и применение их для различных практических целей побудили крупнейших электротехников второй половины XIX в. заняться изобретением и разработкой различных электроизмерительных приборов, без которых стало немыслимо дальнейшее развитие теоретической и практической электротехники.
- В 1871 годуА. Г. Столетов впервые применил баллистический метод для магнитных измерений и исследовал зависимость магнитной восприимчивости ферромагнетиков от напряженности магнитного поля, создав этим основы правильного подхода к расчету магнитных цепей. Этот метод используется в магнитных измерениях и в настоящее время
- В 1880—1881 гг. французские инженер Депре и физиолог д’Арсонваль построили ряд высокочувствительных гальванометров с зеркальным отсчетом
- В 1881 г. немецкий инженер Ф. Уппенборн изобрел электромагнитный прибор с эллиптическим сердечником, а в 1886 г. он же предложил электромагнитный прибор с круглой катушкой и двумя цилиндрическими сердечниками
- В 1894 г. немецкий инженер Т. Бругер изобрел логометр
Литература и документация
Литература
- Б.И.Панев Электрические измерения: Справочник (в вопросах и ответах) — М.:Агропромиздат, 1987
- Электрические измерения.Средства и методы измерений (общий курс).Под ред. Е. Г. Шрамкова — М.:Высшая школа, 1972
- Справочник по электроизмерительным приборам; Под ред. К. К. Илюнина — Л.:Энергоатомиздат, 1983
- Атамалян Э. Г. Приборы и методы измерения электрических величин — издательство «ДРОФА», 2005
- Панфилов В. А. Электрические измерения — издательство «Академия», 2008
- Полищук Е.С. Электрические измерения электрических и неэлектрических величин
- Н. Н. Евтихиев Измерение электрических и неэлектрических величин — М.: Энергоатомиздат, 1990
- Шкурин Г. П. Справочник по электро- и электронноизмерительным приборам — М., 1972
Нормативно-техническая документация
- ГОСТ 22261—94 «Средства измерений электрических и магнитных величин. Общие технические условия»
- ГОСТ 30012.1—2002 (МЭК 60051-1—97) «Приборы аналоговые показывающие электроизмерительные прямого действия и вспомогательные части к ним. Часть 1. Определения и основные требования, общие для всех частей»
- ГОСТ 9999—94 (МЭК 258—68) «Электроизмерительные самопишущие приборы прямого действия и вспомогательные части к ним»
- ГОСТ 13607—68 «Приборы и преобразователи электроизмерительные цифровые. Основные термины и определения»
- ГОСТ 14265—79 «Приборы электроизмерительные аналоговые контактные прямого действия. Общие технические условия»
- ГОСТ 19875—79 «Приборы электроизмерительные самопишущие быстродействующие. Общие технические условия»
- ГОСТ 23217—78 (МЭК 51) «Приборы электроизмерительные аналоговые с непосредственным отсчетом. Наносимые условные обозначения»
См. также
- Средство измерений
- Измерительная техника
- Измерительный механизм
- Электроизмерения
- Радиоизмерительные приборы
- Кабельный тестер
- Электроизмерительные приборы
- Измерительная техника
Wikimedia Foundation . 2010 .
Электрические измерения
измерения электрических величин: электрического напряжения, электрического сопротивления, силы тока, частоты и фазы переменного тока, мощности тока, электрической энергии, электрического заряда, индуктивности, электрической ёмкости и др. Э. и. — один из распространённых видов измерений. Благодаря созданию электротехнических устройств, преобразующих различные неэлектрические величины в электрические, методы и средства Э. и. используются при измерениях практически всех физических величин. Область применения Э. и.: научные исследования в физике, химии, биологии и др.; технологические процессы в энергетике, металлургии, химической промышленности и др.; транспорт; разведка и добыча полезных ископаемых; метеорологические и океанологические работы; медицинская диагностика; изготовление и эксплуатация радио и телевизионных устройств, самолётов и космических аппаратов.
Большое разнообразие электрических величин, широкие диапазоны их значений, требования высокой точности измерений, разнообразие условий и областей применения Э. и. обусловили многообразие методов и средств Э. и. Измерение «активных» электрических величин (силы тока, электрического напряжения и др.), характеризующих энергетическое состояние объекта измерений, основывается на непосредственном воздействии этих величин на средство Э. и. и, как правило, сопровождается потреблением некоторого количества электрической энергии от объекта измерений (см. Амперметр, Векторметр, Вольтметр, Логометр, Ваттметр, Счётчик электрический, Частотомер). Измерение «пассивных» электрических величин (электрического сопротивления, его комплексных составляющих, индуктивности, тангенса угла диэлектрических потерь и др.), характеризующих электрические свойства объекта измерений, требует возбуждения объекта измерений посторонним источником электрической энергии и измерения ответной реакции (см. Омметр, Мегомметр, Индуктивности измерители, Ёмкости измеритель, Добротности измеритель).
Методы и средства Э. и. в цепях постоянного и переменного тока существенно различаются. В цепях переменного тока они зависят от частоты и характера изменения величин, а также от того, какие характеристики переменных электрических величин (мгновенные, действующие, максимальные, средние) измеряются. Для Э. и. в цепях постоянного тока наиболее широко применяют измерительные магнитоэлектрические приборы (См. Магнитоэлектрический прибор) и цифровые измерительные устройства (См. Цифровое измерительное устройство). Для Э. и. в цепях переменного тока — электромагнитные приборы (См. Электромагнитный прибор), электродинамические приборы (См. Электродинамический прибор), индукционные приборы (См. Индукционный прибор), электростатические приборы (См. Электростатический прибор), выпрямительные электроизмерительные приборы (См. Выпрямительный электроизмерительный прибор), Осциллографы, цифровые измерительные приборы. Некоторые из перечисленных приборов применяют для Э. и. как в цепях переменного, так и постоянного тока (см. Электроизмерительный комбинированный прибор).
Значения измеряемых электрических величин заключаются примерно в пределах: силы тока — от 10 -16 до 10 5 а, напряжения — от 10 -9 до 10 7 в, сопротивления — от 10 -8 до 10 16 ом, мощности — от 10 -16 вт до десятков Гвт, частоты переменного тока — от 10 -3 до 10 12 гц. Диапазоны измеряемых значений электрических величин имеют непрерывную тенденцию к расширению. Измерения на высоких и сверхвысоких частотах, измерение малых токов и больших сопротивлений, высоких напряжений и характеристик электрических величин в мощных энергетических установках выделились в разделы, развивающие специфические методы и средства Э. и. (см. Радиоизмерения, Диэлектрические измерения, Высоких напряжений техника, Импульсная техника, Импульсная техника высоких напряжений). Расширение диапазонов измерений электрических величин связано с развитием техники электрических измерительных преобразователей, в частности с развитием техники усиления и ослабления электрических токов и напряжений (см. Электрических сигналов усилитель, Делитель напряжения, Шунт, Измерительный трансформатор). К специфическим проблемам Э. и. сверхмалых и сверхбольших значений электрических величин относятся борьба с искажениями, сопровождающими процессы усиления и ослабления электрических сигналов, и разработка методов выделения полезного сигнала на фоне помех.
Пределы допускаемых погрешностей Э. и. колеблются приблизительно от единиц до 10 -4 %. Для сравнительно грубых измерений пользуются измерительными приборами (См. Измерительный прибор) прямого действия. Для более точных измерений используются методы, реализуемые с помощью мостовых и компенсационных электрических цепей (см. Компенсационный метод измерений, Потенциометр, Мост измерительный).
Применение методов Э. и. для измерения неэлектрических величин основывается либо на известной связи между неэлектрическими и электрическими величинами, либо на применении измерительных преобразователей (См. Измерительный преобразователь)(Датчиков). Для обеспечения совместной работы датчиков с вторичными измерительными приборами, передачи электрических выходных сигналов датчиков на расстояние, повышения помехоустойчивости передаваемых сигналов применяют разнообразные электрические промежуточные измерительные преобразователи, выполняющие одновременно, как правило, функции усиления (реже, ослабления) электрических сигналов, а также нелинейные преобразования с целью компенсации нелинейности датчиков. На вход промежуточных измерительных преобразователей могут быть поданы любые электрические сигналы (величины), в качестве же выходных сигналов наиболее часто используют электрические унифицированные сигналы постоянного, синусоидального или импульсного тока (напряжения). Для выходных сигналов переменного тока используется амплитудная, частотная или фазовая модуляция. Всё более широкое распространение в качестве промежуточных измерительных преобразователей получают цифровые преобразователи.
Комплексная автоматизация научных экспериментов и технологических процессов привела к созданию комплексных средств Э. и. измерительных установок, измерительно-информационных систем (См. Измерительно-информационная система), а также к развитию техники телеметрии (См. Телеметрия), радиотелемеханики (См. Радиотелемеханика).
Современное развитие Э. и. характеризуется использованием новых физических эффектов: (например, Джозефсона эффекта, Холла эффекта) для создания более чувствительных и высокоточных средств Э. и., внедрением в технику Э. и. достижении электроники, микроминиатюризацией средств Э. и., сопряжением их с вычислительной техникой, автоматизацией процессов Э. и., а также унификацией метрологических и других требований к ним. В СССР разработана агрегатированная система средств электроизмерительной техники — АСЭТ. С 1 июля 1978 введён в действие ГОСТ 22261—76 «Средства измерений электрических величин. Общие технические условия», регламентирующий единые технические, в частности метрологические, требования к средствам Э. и. (см. Измерительная техника).
Лит: Электрические измерения. Средства и методы измерений, (Общий курс), под ред. Е. Г. Шрамкова, М., 1972; Основы электроизмерительной техники, под ред. М. И. Левина М., 1972; Илюкович А. М., Техника электрометрии, М., 1976; Шваб А., Измерения на высоком напряжении, пер. с нем., М., 1973; Электрические измерительные преобразователи, под ред. Р. Р. Харченко, М. — Л., 1967; Цапенко М. П., Измерительные информационные системы, 1974.
В. П. Кузнецов.
Большая советская энциклопедия. — М.: Советская энциклопедия . 1969—1978 .
- электромеханические: