Что является источником колебания волн
Перейти к содержимому

Что является источником колебания волн

  • автор:

Лекция – 14. Механические волны.

1.Волна – это процесс распространения колебаний какой-либо физической величины в пространстве. Например, звуковые волны в газах или в жидкостях представляют собой распространение колебаний давления и плотности в этих средах. Электромагнитная волна – это процесс распространения в пространстве колебаний напряженности электрического магнитного полей.

Энергию и импульс можно переносить в пространстве путём переноса вещества. Любое движущееся тело обладает кинетической энергией. Следовательно оно переносит кинетическую энергию, перенося вещество. Это же тело будучи нагретым, перемещаясь в пространстве переносит энергию тепловую, перенося вещество.

Частицы упругой среды связаны между собой. Возмущения, т.е. отклонения от положения равновесия одной частицы передаются соседним частицам, т.е. энергия и импульс передаются от одной частицы соседним частицам, при этом каждая частица остаётся около своего положения равновесия. Таким образом, энергия и импульс передаются по цепочке от одной частице к другой и переноса вещества при этом не происходит.

Итак, волновой процесс есть процесс переноса энергии и импульса в пространстве без переноса вещества.

2. Механическая волна или упругая волна – возмущение (колебание), распространяющееся в упругой среде. Упругой средой, в которой распространяются механические волны, является воздух, вода, дерево металлы и другие упругие вещества. Упругие волны называют звуковыми волнами.

3. Источник механических волн – тело, совершающее колебательное движение, находясь в упругой среде, например колеблющиеся камертоны , струны, голосовые связки.

4. Точечный источник волн – источник волны, размерами которого можно пренебречь по сравнению с расстоянием, на которое распространяется волна.

5. Поперечная волна – волна, в которой частицы среды колеблются в направлении перпендикулярном к направлению распространения волны. Например, волны на поверхности воды – поперечные волны, т.к. колебания частиц воды происходят в направлении перпендикулярном направлению к поверхности воды, а волна распространяется по поверхности воды. Поперечная волна распространяется вдоль шнура, один конец которого закреплён, другой совершает колебания в вертикальной плоскости.

Поперечная волна может распространяться лишь по границе раздела дух разных сред.

6 . Продольная волна – волна, в которой колебания происходят в направлении распространения волны. Продольная волна возникает в длинной спиральной пружине, если один её конец подвергается периодическим возмущениям, направленным вдоль пружины. Упругая волна, бегущая вдоль пружины представляет собой распространяющиеся последовательности сжатия и растяжения (Рис. 88)

Продольная волна может распространяться только внутри упругой среды например, в воздухе, в воде. В твёрдых телах и в жидкостях могут распространяться одновременно как поперечные, так и продольные волны, т.к. твёрдое тело и жидкость всегда ограничены поверхностью – поверхностью раздела двух сред. Например, если стальной стержень ударить в торец молотком, то в нём начнёт распространяться упругая деформация. По поверхности стержня побежит поперечная волна, а внутри него будет распространяться волна продольная ( сжатия и разрежения среды) (Рис.89).

7. Фронт волны ( волновая поверхность) – геометрическое место точек, колеблющихся в одинаковых фазах. На волновой поверхности фазы колеблющихся точек в рассматриваемый момент времени имеют одно и тоже значение. Если в спокойное озеро бросить камень, то по поверхности озера от места его падения начнут распространяться поперечные волны в виде окружности, с центром в месте падения камня. В этом примере фронт волны представляет собой окружность.

В сферической волне фронт волны есть сфера. Такие волны порождаются точечными источниками.

На очень больших расстояниях от источника можно пренебречь кривизной фронта и считать фронт волны плоским. В этом случае волна называется плоской.

8. Луч – прямая линия нормальная к волновой поверхности. В сферической волне лучи направлены вдоль радиусов сфер от центра, где расположен источник волн (Рис.90).

В плоской волне лучи направлены перпендикулярно к поверхности фронта (Рис. 91).

9. Периодические волны. Рассуждая о волнах мы подразумевали однократное возмущение, распространяющееся в пространстве.

Е сли же источник волн совершает непрерывные колебания, то в среде возникают бегущие одна за одной упругие волны. Такие волны называют периодическими.

10. Гармоническая волна – волна, порождаемая гармоническими колебаниями. Если источник волн совершает гармонические колебания, то он порождает гармонические волны – волны в которых частицы колеблются по гармоническому закону.

11. Длина волны. Пусть гармоническая волна распространяется вдоль оси OX, а колебания в ней происходят в направлении оси OY. Эта волна поперечная и её можно изобразить в виде синусоиды (Рис.92).

Такую волну можно получить, вызывая колебания в вертикальной плоскости свободного конца шнура.

Длиной волны называют расстояние между двумя ближайшими точками А и В, колеблющимися в одинаковых фазах (Рис. 92).

12. Скорость распространения волны – физическая величина численно равная скорости распространения колебаний в пространстве. Из Рис. 92 следует, что время за которое колебание распространяется от точки до точки А до точки В, т.е. на расстояние длины волны равно периоду колебаний. Поэтому скорость распространения волны равна

13. Зависимость скорости распространения волны от свойств среды. Частота колебаний при возникновении волны зависит только от свойств источника волны и не зависит от свойств среды. От свойств среды зависит скорость распространения волны. Поэтому длина волны изменяется при переходе границы раздела двух разных сред. Скорость волны зависит от связи между атомами и молекулами среды. Связь между атомами и молекулами в жидкостях и твёрдых телах значительно более жесткая, чем в газах. Поэтому скорости звуковых волн в жидкостях и твёрдых телах значительно больше, чем в газах. В воздухе скорость звука при нормальных условиях равна 340 , в воде 1500 , а в стали 6000 .

Средняя скорость теплового движения молекул в газах с понижением температуры уменьшается и как следствие скорость распространения волны в газах уменьшается. В среде более плотной, а следовательно более инертной, скорость волны меньше. Если звук распространяется в воздухе то его скорость зависит от плотности воздуха. Там , где плотность воздуха больше, там скорость звука меньше. И наоборот там, где плотность воздуха меньше там скорость звука больше. Вследствие этого при распространении звука фронт волны искажается. Над болотом или над озером особенно в вечернее время плотность воздуха вблизи поверхности из- за водяных паров больше чем на некоторой высоте. Поэтому скорость звука вблизи поверхности воды меньше, чем на некоторой высоте. Вследствие этого фронт волны разворачивается таким образом, что верхняя часть фронта всё больше изгибается в направлении к поверхности озера. Получается так, что энергия волны идущей вдоль поверхности озера и энергия волны идущей под углом к поверхности озера складываются. Поэтому в вечернее время звук хорошо распространяется на озером. Даже тихий раговор можно услышать, стоя на противоположном берегу.

1 4. Принцип Гюйгенса – каждая точка поверхности, которой достигла в данный момент волна является источником вторичных волн. Проведя поверхность касательную к фронтам всех вторичных волн, получим фронт волны в следующий момент времени.

Рассмотрим для примера волну, распространяющуюся по поверхности воды из точки О (Рис.93) Пусть в момент времени t фронт имел форму окружности радиуса R с центром в точке О. В следующий момент времени каждая вторичная волна будет иметь фронт в форме окружности радиуса , где V – скорость распространения волны. Проведя поверхность касательную к фронтам вторичных волн, получим фронт волны в момент времени (Рис. 93)

Если волна распространяется в сплошной среде, то фронт волны представляет собой сферу.

1 5. Отражение и преломление волн. При падении волны на поверхность раздела двух различных сред каждая точка этой поверхности согласно принципу Гюйгенса становится источником вторичных волн, распространяющихся по обе стороны от поверхности радела. Поэтому при переходе границы раздела двух сред волна частично отражается и частично проходит через эту поверхность. Т.к. среды различные, то и скорость волн в них различна. Поэтому при переходе границы раздела двух сред направление распространения волы изменяется, т.е. происходит преломление волны. Рассмотрим на основе принципа Гюйгенса процесс и законы отражения и преломления полн.

16. Закон отражения волн. Пусть на плоскую поверхность раздела двух различных сред падает плоская волна. Выделим в ней участок между двумя лучами и (Рис.94)

Угол падения – угол — между лучом падающим и перпендикуляром к поверхности раздела в точке падения.

Угол отражения – угол между лучом отраженным и перпендикуляром к поверхности раздела в точке падения.

В момент когда, луч достигнет поверхности раздела в точке , эта точка станет источником вторичных волн. Фронт волны в этот момент отмечен отрезком прямой АС (Рис.94). Следовательно, лучу еще предстоит в этот момент пройти до поверхности раздела путь СВ . Пусть луч проходит этот путь за время . Падающий и отраженный лучи распространяются по одну сторону о поверхности раздела поэтому их скорости одинаковы и равны V. Тогда .

За время вторичная волна из точки А пройдёт путь . Следовательно . Прямоугольные треугольники и равны, т.к. — общая гипотенуза и катеты . Из равенства треугольников и следует равенство углов . Но и , т.е. .

Теперь сформулируем закон отражения волн: луч падающий , луч отраженный , перпендикуляр к границе раздела двух сред, восставленный в точке падения лежат в одной плоскости; угол падения равен углу отражения.

1 7. Закон преломления волн. Пусть через плоскую границу раздела двух сред проходит плоская волна. Причём угол падения отличен от нуля (Рис.95).

Угол преломления – угол между лучом преломлённым и перпендикуляром к границе раздела, восставленным в точке падения.

Обозначим и скорости распространения волн в средах 1 и 2. В тот момент, когда луч достигнет границы раздела в точке А , эта точка станет источником волн, распространяющихся во второй среде – луч , а лучу ещё предстоит пройти путь до поверхности радела. Пусть — время, за которое луч проходит путь СВ, тогда . За это же время во второй среде луч пройдёт путь . Т.к. , то и .

Треугольники и прямоугольные с общей гипотенузой , и = , как углы с взаимно перпендикулярными сторонами. Для углов и запишем следующие равенства

Учитывая, что , , получим

Теперь сформулируем закон преломления волн: Луч падающий, луч преломлённый и перпендикуляр к границе раздела двух сред, восставленный в точке падения, лежат в одной плоскости; отношение синуса угла падения к синусу угла преломления есть величина постоянная для двух данных сред и называется относительным показателем преломления для двух данных сред.

18. Уравнение плоской волны. Частицы среды, находящиеся на расстоянии S от источника волн начинают колебаться только тогда, когда до неё дойдет волна. Если V есть скорость распространения волны, то колебания начнутся с опозданием на время

Если источник волн колеблется по гармоническому закону то для частицы, находящейся на расстоянии S от источника, закон колебаний запишем в виде

Введём величину , называемую волновым числом. Оно показывает, сколько длин волн укладывается на расстоянии равном единиц длины. Теперь закон колебаний частицы среды находящейся на расстоянии S от источника запишем в виде

Это уравнение определяет смещение колеблющейся точки, как функции времени и расстояния от источника волн и называется уравнением плоской волны.

19. Энергия и интенсивность волны. Каждая частица, до которой дошла волна колеблется и следовательно обладает энергией. Пусть в некотором объёме упругой среды распространяется волна с амплитудой А и циклической частотой . Это значит , что средняя энергия колебаний в этом объёме равна

, где m масса выделенного объёма среды.

Средняя плотность энергии ( средняя по объёму) есть энергия волны в единице объёма среды

, где плотность среды.

Интенсивность волны – физическая величина, численно равная энергии, которую переносит волна за единицу времени через единицу площади плоскости перпендикулярной к направлению распространения волны ( через единицу площади фронта волны), т.е.

Средняя мощность волны есть средняя полная энергия, переносимая волной за единицу времени через поверхность с площадью S . Среднюю мощность волны получим, умножив интенсивность волны на площадь S

20. Принцип суперпозиции (наложения). Если в упругой среде распространяются волны от двух и более источников, то как показывают наблюдения, волны проходят одна через другую совершенно не влияя друг на друга. Иными словами волны не взаимодействуют друг с другом. Это объясняется тем что в пределах в пределах упругой деформации сжатия и растяжения в одном направлении никоим образом не влияют на упругие свойства по другим направлениям.

Таким образом, каждая точка среды куда приходят две и более волны принимает участие в колебаниях, вызванных каждой волной. При этом результирующее смещение частицы среды в любой момент времени равно геометрической суммой смещений, вызываемых каждым из складывающихся колебательных процессов. В этом и состоит суть принципа суперпозиции или наложения колебаний.

Р езультат сложения колебаний зависит от амплитуды, частоты и разности фаз складывающихся колебательных процессов.

21. Когерентные колебания – колебания с одинаковой частотой и постоянной в времени разностью фаз.

22. Когерентные волны – волны одинаковой частоты или одинаковой длины волны, разность фаз которых в данной точке пространства остаётся постоянной во времени.

23. Интерференция волн – явление увеличения или уменьшения амплитуды результирующей волны при наложении двух и более когерентных волн.

а ) .Условия интерференционного максимума. Пусть волны от двух когерентных источников и встречаются в точке А (Рис.96).

Смещения частиц среды в точке А , вызванные каждой волной в отдельности запишем согласно уравнению волны в виде

где и , , — амплитуды и фазы колебаний, вызванных волнами в точке А, и — расстояния точки, — разность эти расстояний или разность хода волн.

Из-за разности хода волн вторая волна запаздывает по сравнению с первой. Это значит, что фаза колебаний в первой волне опережает фазу колебаний во второй волне, т.е. . Их разность фаз остается постоянной во времени.

Для того, чтобы в точке А частицы совершали колебания с максимальной амплитудой , гребни обеих волн или их впадины должны достигнуть точки А одновременно в одинаковых фазах или с разностью фаз равной , где n целое число, а — есть период функций синуса и косинуса,

Здесь , поэтому условие интерференционного максимума запишем в виде

, где — целое число .

Итак, при наложении когерентных волн амплитуда результирующего колебания максимальна, если разность хода волн равна целому числу длин волн.

б ) Условие интерференционного минимума. Амплитуда результирующего колебания в точке А минимальна, если в эту точку одновременно придут гребень и впадина двух когерентных волн. Это значит, сто волны придут в эту точку в противофазе, т.е. разность их фаз равна или , где целое число.

Условие интерференционного минимума получим, проведя алгебраические преобразования:

Таким образом, амплитуда колебаний при наложении двух когерентных волн минимальна, если разность хода волн равна нечетному числу полуволн.

24. Интерференция и закон сохранения энергии. При интерференции волн в местах интерференционных минимумов энергия результирующих колебаний меньше, чем энергия интерферирующих волн. Но в местах интерференционных максимумов энергия результирующих колебаний превышает сумму энергий интерферирующих волн настолько, насколько уменьшилась энергия в местах интерференционных минимумов.

При интерференции волн энергия колебаний перераспределяется в пространстве, но закон сохранения строго выполняется.

25. Дифракция волн – явление огибания волной препядствия, т.е. отклонение от прямолинейного распространения волн.

Д ифракция особенно хорошо заметна в случае, когда размеры препядствия меньше длины волны или сравнимы с ней. Пусть на пути распространения плоской волны расположен экран с отверстием, диаметр которого сравним с длиной волны (Рис. 97).

По принципу Гюйгенса каждая точка отверстия становится источником таких же волн . Размер отверстия настолько мал, что все источники вторичных волн расположены так близко друг к другу, что их все можно считать одной точкой – одним источником вторичных волн.

Если на пути волны поставить препядствие, размер которого сравним с длиной волны, то края по принципу Гюйгенса становятся источником вторичных волн. Но размеры препядствия настолько малы, что края его можно считать совпадающими, т.е. само препядствие является точечным источником вторичных волн ( Рис.97).

Я вление дифракции легко наблюдается при распространении волн по поверхности воды. Когда волна достигает тонкой, неподвижной палочки, она становится источником волн (Рис. 99).

2 5. Принцип Гюйгенса-Френеля. Если же размеры отвепстия значительно превышают длину волны, то волна, проходя отверстие распространяется прямолинейно (Рис.100).

Е сли размеры препядствия значительно превышают длину волны, то за препядствием образуется зона тени (Рис.101). Эти опыты противоречат принципу Гюйгенса. Французский физик Френель дополнил принцип Гюйгенса представлением о когерентости вторичных волн. Каждая точка, в которую пришла волна становится источником таких же волн, т.е. вторичных когерентных волн. Поэтому волны отсутствуют только в тех местах, в которых для вторичных волн выполняются условия интерференционного минимума.

2 6. Поляризованная волна – поперечная волна, в которой колебания всех частиц происходят в одной плоскости. Если свободный конец шнура совершает колебания в одной плоскости, то по шнуру распространяется плоскополяризованная волна. Если свободный конец шнура совершает колебания в различных направлениях, то волна распрстраняющаяся по шнуру не пеоляризована. Если на пути неполяризованной волны поставить препядствие в виде узкой щели, то после прохождении щели волна становится поляризованной, т.к. щель пропускает колебания шнура, происходящие вдоль неё.

Если на пути поляризованной волны поставить вторую щель параллельную первой, то волна свободно пройдет через неё (Рис.102).

Е сли же вторую щель расположить под прямым углом по отношению к первой, то распространение волы прекратится. Устройство, которое выделяет колебания, происходящие в одной определённой плоскости называется поляризатором (первая щель). Устройство, которое определяет плоскость поляризации называется анализатором.

27. Звук – это процесс распространения сжатий и разрежений в упругой среде например, в газе, жидкости или в металлах. Распространение сжатий и разрежений происходит в результате столкновения молекул.

28. Громкость звука это сила воздействия звуковой волны на барабанную перепонку человеческого уха, которая от звукового давления.

Звуковое давление – это дополнительное давление, возникающее в газе или жидкости при распространении звуковой волны. Звуковое давление зависит от амплитуды колебании источника звука. Если заставить звучать камертон лёгким ударом , то мы получим одну громкость. Но, если камертон ударить сильнее, то амплитуда его колебаний увеличится и он зазвучит громче. Таким образом громкость звука определяется амплитудой колебании источника звука, т.е. амплитудой колебаний звукового давления.

29. Высота тона звука определяется частотой колебаний. Чем больше частота звука, тем выше тон.

Звуковые колебания происходящие по гармоническому закону воспринимаются как музыкальный тон. Обычно звук это сложный звук, который представляет собой совокупность колебаний с близкими частотами.

Основной тон сложного звука – это тон соответствующий наименьшей частоте в наборе частот данного звука. Тоны соответствующие остальным частотам сложного звука называются обертонами.

30. Тембр звука. Звуки одним и тем же основным тоном различаются тембром, который определяется набором обертонов.

У каждого человека свой только ему присущий тембр. Поэтому мы всегда можем отличить голос одного человека от голоса другого человека, даже в том случае, когда их основные тоны одинаковы.

31. Ультразвук. Человеческое ухо воспринимает звуки , частоты которых заключены в пределах от 20Гц до 20000Гц.

Звуки с частотами более 20000Гц называются ультразвуками. Ультразвуки распространяются в виде узких пучков и используются в гидролокации и дефектоскопии. С помощью ультразвука можно определить глубину морского дна и обнаружить дефекты в различных деталях.

Например, если рельс не имеет трещин, то ультразвук испущенный из одного конца рельса, отразившись от другого его конца даст только одно эхо. Если же есть трещины, то ультразвук будет отражаться от трещин и приборы будут фиксировать несколько эхо. С помощью ультразвука обнаруживают подводные лодки, косяки рыб. Летучая мышь ориентируется в пространстве с помощью ультразвука.

32. Инфразвук – звук с частотой ниже 20Гц. Эти звуки воспринимаются некоторыми животными . Их источником часто бывают колебания земной коры при землетрясениях.

3 3. Эффект Доплера – это зависимость частоты воспринимаемой волны от движения источника или приёмника волн.

Пусть на поверхности озера покоится лодка и волны бьются о её борт с некоторой частотой . Если лодка начнёт движение против направления распространения волн, то частота ударов волн о борт лодки станет больше. Причём, чем больше скорость лодки, тем больше частота ударов волн о борт. И наоборот при движении лодки в направлении распространения волн частота ударов станет меньше. Эти рассуждения легко понять из Рис. 103.

Чем больше скорость встречного движения, тем меньшее время затрачивается на прохождение расстояния между двумя ближайшими гребнями, т.е. тем меньше период волны и тем больше частота волны относительно лодки.

Если же наблюдатель неподвижен, но движется источник волн, то частота волны воспринимаемая наблюдателем зависит от движения источника.

Пусть по неглубокому озеру по направлению к наблюдателю идет цапля. Каждый раз, когда она опускает ногу в воду от этого места кругами расходятся волны. И каждый раз расстояние между первой и последней волнами уменьшается, т.е. на меньшем расстоянии укладывается большее число гребней и впадин. Поэтому для неподвижного наблюдателя по направлению к которому идет цапля частота увеличивается. И наоборот для неподвижного наблюдателя, находящегося в диаметрально противоположной точке на большем расстоянии столько же гребней и впадин. Поэтому для этого наблюдателя частота уменьшается (Рис.104).

Лекция 3

Колебания – это движение тела, в ходе которого оно многократно движется по одной и той же траектории и проходит при этом одни и те же точки пространства. Примерами колеблющихся объектов могут служить — маятник часов, струна скрипки или фортепиано, вибрации автомобиля. Колебания играют важную роль во многих физических явлениях за пределами области механики. Например, напряжение и сила тока в электрических цепях могут колебаться. Биологическими примерами колебаний могут служить сердечные сокращения, артериальный пульс и производство звука голосовыми связками. Хотя физическая природа колеблющихся систем может существенно отличаться, разнообразные типы колебаний могут быть охарактеризованы количественно сходным образом. Физическая величина, которая изменяется со временем при колебательном движении, называется смещением.Амплитуда представляет собой максимальное смещение колеблющегося объекта от положения равновесия. Полное колебание, или цикл – это движение, при котором тело, выведенное из положения равновесия на некоторую амплитуду, возвращается в это положение, отклоняется до максимального смещения в противоположную сторону и возвращается в свое первоначальное положение. Период колебания T – время, необходимое для осуществления одного полного цикла. Число колебаний за единицу времени — это частота колебаний.

Простое гармоническое колебание

В некоторых телах при их растяжении или сжатии возникают силы, противодействующие этим процессам. Эти силы прямо пропорциональны длине растяжения или сжатия. Таким свойством обладают пружины. Когда тело, подвешенное к пружине, отклоняют от положения равновесия, а потом отпускают, его движение представляет собой простое гармоническое колебание. Рассмотрим тело массой m, подвешенное на пружине в положении равновесия. Смещая тело вниз, можно вызвать колебание тела. Если — смещение тела от положения равновесия, то в пружине возникает сила F (сила упругости), направленная в противоположную смещению сторону. В соответствии с законом Гука, сила упругости пропорциональна смещению Fупр = -k·S , где k — константа, которая зависит от упругих свойств пружины. Сила является отрицательной, поскольку она стремится вернуть тело в положение равновесия. Действуя на тело массой m, сила упругости придает ему ускорение вдоль направления смещения. Согласно закону Ньютона F = ma, где a = d 2 S/d 2 t. Для упрощения последующих рассуждений пренебрежем трением и вязкостью в колеблющейся системе. В таком случае амплитуда колебаний не будет изменяться со временем. Если не действуют никакие внешние силы (даже сопротивление среды) на колеблющиеся тело, то колебания осуществляются с определенной частотой. Эти колебания называются свободными. Амплитуда таких колебаний остается постоянной. Таким образом, m·d 2 S/d 2 t = -k·S (1) . Перемещая все члены равенства и деля их на m, получим уравнения d 2 S/d 2 t +(k/m)·S = 0, а затем d 2 S/d 2 t +ω0 2 ·S = 0 (2), где k/m = ω0 2 Уравнение (2) является дифференциальным уравнением простого гармонического колебания. Решение уравнения (2) дает две функции: S = A sin(ω0t + φ0) (3) и S = A cos(ω0t + φ0) (4) Таким образом, если тело массой m осуществляет простые гармонические колебания, изменение смещения этого тела от точки равновесия во времени осуществляется по закону синуса или косинуса. 0t + φ0) — фаза колебания с начальной фазой φ0. Фаза является свойством колебательного движения, которое характеризует величину смещения тела в любой момент времени. Измеряется фаза в радианах. Величина называется угловой, или круговой, частотой. Измеряется в радианах, деленных за секунду ω0 = 2πν или ω0 = 2π/T (5) График уравнения простого гармонического колебания представлен на Рис. 1. Тело, первоначально смещенное на расстояние А – амплитуды колебания,а затем отпущенное, продолжает колеблется от -A и до A за время T — период колебания.

Рис 1.

Таким образом, в ходе простого гармонического колебания величина смещения тела изменяется во времени вдоль синусоиды или косинусоиды. Поэтому простое гармоническое колебание часто называют синусоидальным колебанием. Простое гармоническое колебание имеет следующие основные характеристики: a) движущееся тело попеременно находится по обе стороны от положения равновесия; б) тело повторяет свое движение за определенный интервал времени; c) ускорение тела всегда пропорционально смещению и направлено противоположно ему; д) графически этот тип колебания описывает синусоида.

Простое гармоническое колебание не может продолжаться сколь угодно долго при постоянной амплитуде. В реальных условиях через некоторое время гармонические колебания прекращаются. Такие гармонические колебания в реальных системах называются затухающим колебаниями (рис.2). К снижению амплитуды колебаний с последующим их прекращением приводит действие внешних сил, например, трения и вязкости. Эти силы уменьшают энергию колебаний. Они называются диссипативными силами, поскольку способствуют рассеиванию потенциальной и кинетической энергии макроскопических тел в энергию теплового движения атомов и молекул тела.

Рис 2.

Величина диссипативных сил зависит от скорости тела. Если скорость ν сравнительно мала, то диссипативная сила F прямо пропорциональна этой скорости Fтр = -rν = -r·dS/dt (6) Здесь r — постоянный коэффициент, независимый от скорости или частоты колебаний. Знак минус указывает на то, что тормозящая сила направлена против вектора скорости движения. Принимаясь во внимание действие диссипативных сил, дифференциальное уравнение гармонического затухающего колебания имеет вид: m·d 2 S/d 2 t = -kS — r·dS/dt. Перенеся все члены равенства в одну сторону, разделив каждый член на m и заменяя k/m = ω 2 ,r/m = 2β , получим дифференциальное уравнение свободных гармонических затухающих колебаний

где β — коэффициент затухания, характеризующий затухание колебаний за единицу времени. Решением уравнения является функция S = A0·e -βt ·sin(ωt + φ0) (8) Уравнение (8) показывает, что амплитуда гармонического колебания уменьшается экспоненциально во времени. Частота затухающих колебаний определяется уравнением ω = √(ω0 2 — β 2 ) (9) Если колебание не может происходить вследствие большого , то система возвращается в свое положение равновесия по экспоненциальному пути без колебания.

Вынужденное колебание и резонанс

Если не сообщать колеблющейся системе внешнюю энергию, то амплитуда гармонического колебания уменьшается во времени из-за диссипативных эффектов. Периодическое действие силы может увеличить амплитуду колебаний. Теперь колебание не будет затухать со временем, поскольку потерянная энергия восполняется в течение каждого цикла действием внешней силы. Если будет достигнут баланс этих двух энергий, то амплитуда колебаний будет оставаться постоянной. Эффект зависит от соотношения частот вынуждающей силы ω и собственной частоты колебания системы ω0. Если тело колеблется под действием внешней периодической силы с частотой этой внешней силы, то колебание тела называется вынужденным. Энергия внешней силы оказывает наибольшее действие на колебания системы, если внешняя сила обладает определенной частотой. Эта частота должна быть такой же, как и частота собственных колебаний системы, которые бы эта система совершала в отсутствие внешних сил. В таком случае происходитрезонанс – явление резкого возрастания амплитуды колебаний при совпадении частоты вынуждающей силы с частотой собственных колебаний системы.

Распространение колебаний из одного места в другое называется волновым движением, или просто волной. Механические волны образуются вследствие простых гармонических колебаний частиц среды от их среднего положения. Вещество среды не перемещается при этом из одного места в другое. Но частицы среды, передающие друг другу энергию, необходимы для распространения механических волн. Таким образом, механическая волна является возмущением материальной среды, которое проходит эту среду с определенной скоростью, не изменяя своей формы. Если в воду бросить камень, от места возмущения среды побежит одиночная волна. Однако волны иногда могут быть периодическими. Например, вибрирующий камертон производит попеременные сжатия и разрежения окружающего его воздуха. Эти возмущения, воспринимаемые как звук, происходят периодически с частотой колебаний камертона. Существуют механические волны двух видов. (1) Поперечная волна. Этот вид волн характеризуется вибрацией частиц среды под прямым углом к направлению распространения волны. Поперечные механические волны могут возникать только в твердых веществах и на поверхности жидкостей. В поперечной волне все частицы среды осуществляют простое гармоническое колебание возле своих средних положений. Положение максимального смещения вверх называется «пиком«, а положение максимального смещения вниз — «впадиной«. Расстояние между двумя последующими пиками или впадинами называется длиной поперечной волны λ. (2) Продольная волна. Этот вид волн характеризуется колебаниями частиц среды вдоль направления распространения волны. Продольные волны могут распространяться в жидкостях, газах и твердых телах. В продольной волне все частицы среды также осуществляют простое гармоническое колебание около их среднего положения. В некоторых местах частицы среды расположены ближе, а в других местах — дальше, чем в нормальном состоянии. Места, где частицы расположены близко, называются областями сжатия, а места где они находятся далеко друг от друга — областями разрежения. Расстояние между двумя последовательными сжатиями или разрежениями называются длиной продольной волны. Выделяют следующие характеристики волн. (1) Амплитуда — максимальное смещение колеблющейся частицы среды от ее положения равновесия (A). (2) Период – время, необходимое частице для одного полного колебания (T). (3) Частота — количество колебаний, произведенных частицей среды, за единицу времени (ν). Между частотой волны и ее периодом существует обратная зависимость: ν = 1/T . (4) Фаза колеблющейся частицы в любой момент определяет ее положение и направление движения в данный момент. Фаза представляет собой часть длины волны или периода времени. (5) Скорость волны является скоростью распространения в пространстве пика волны (v). Совокупность частиц среды, колеблющихся в одинаковой фазе, формирует фронт волны. С этой точки зрения, волны делятся на два вида. (1) Если источник волны является точкой, из которой она распространяется во всех направлениях, то образуется сферическая волна. (2) Если источник волны колеблющаяся плоская поверхность, то образуется плоская волна. Смещение частиц плоской волны можно описать общим уравнением для всех типов волнового движения: S = A·sin ω · (t — x/v) (10) Это означает, что величина смещения (S) для каждой значения времени (t) и расстояния от источника волны (x) зависит от амплитуды колебания (A), угловой частоты (ω) и скорости волны (v).

Эффект Доплера — изменение частоты волны, воспринимаемой наблюдателем (приемником) благодаря относительному движению источника волн и наблюдателя. Если источник волн приближается к наблюдателю, число волн, прибывающих к наблюдателю волн, каждую секунду превышает испускаемое источником волн. Если источник волн удаляется от наблюдателя, то число испускаемых волн больше, чем прибывающих к наблюдателю. Аналогичный эффект следует в случае, если наблюдатель перемещается относительно неподвижного источника. Примером эффекта Доплера является изменение частоты гудка поезда при его приближении и удалении от наблюдателя. Общее уравнение для эффекта Доплера имеет вид

Здесь νисточн — частота волн, испускаемых источником, и νприемн — частота волн, воспринятая наблюдателем. ν0 — скорость волн в неподвижной среде, νприемн и νисточн — скорости наблюдателя и источника волн соответственно. Верхние знаки в формуле относятся к случаю, когда источник и наблюдатель перемещаются друг к другу. Нижние знаки относятся к случаю удаления друг от друга источника и наблюдателя волн. Изменение частоты волн вследствие эффекта Доплера называют доплеровским сдвигом частоты. Этот феномен используется для измерения скорости перемещения различных тел, включая эритроциты в кровеносных сосудах.

Механические колебания

В технике и окружающем нас мире часто приходится сталкиваться с периодическими (или почти периодическими) процессами, которые повторяются через одинаковые промежутки времени. Такие процессы называют колебательными.Колебательные явления различной физической природы подчиняются общим закономерностям. Например, колебания тока в электрической цепи и колебания математического маятника могут описываться одинаковыми уравнениями. Общность колебательных закономерностей позволяет рассматривать колебательные процессы различной природы с единой точки зрения.

Механическими колебаниями называются движения тел, точно повторяющиеся через одинаковые промежутки времени. Закон движения тела, совершающего колебания, задается с помощью некоторой периодической функции времени x = f(t) (1). Графическое изображение этой функции дает наглядное представление о протекании колебательного процесса во времени.

Примерами простых колебательных систем могут служить груз на пружине или математический маятник, изображенные на рисунке.

Уравнение колебательного движения

Запишем уравнение движения для случая простейшего пружинного маятника, расположенного горизонтально. На груз массой m, смещенный из положения равновесия на расстояние x, действует внешняя сила , сонаправленная со смещением. С учетом действующих в системе силы трения и силы упругости уравнение движения будет иметь вид:

(2).

Пусть сила трения пропорциональна скорости, т.е. , где r – коэффициент трения (постоянная положительная величина, что справедливо при не очень больших скоростях движения); сила упругости , следовательно, уравнение движения (2) можно записать в скалярной форме (т.к. все векторные величины направлены параллельно горизонтальной оси координат) в виде:

(3).

Уравнение (3) – неоднородное линейное дифференциальное уравнение второго порядка, правая часть уравнения характеризует внешнее воздействие на систему.

При отсутствии внешних сил () уравнение 3 приобретает вид

(4),

и в системе возникают свободные колебания. При отсутствии трения уравнение (4) упрощается: (5), и колебания, возникающие в системе при отсутствии сил трения, называются собственными.

В этом случае полная механическая энергия колебательной системы остается постоянной, т.е. .

Решением уравнения (5) является функция вида

Здесь x – смещение тела от положения равновесия, xm – амплитуда колебаний, т. е. максимальное смещение от положения равновесия, ω – циклическая или круговая частота колебаний, t – время. Величина, стоящая под знаком косинуса φ = ωt + φ0 называется фазой гармонического процесса. При t = 0 φ = φ0, поэтому φ0 называют начальной фазой.

Гармонические колебания

Колебания, описываемые уравнением (6), являются гармоническими.

Минимальный интервал времени, через который происходит повторение движения тела, называется периодом колебаний T. Частота (величина, обратная периоду) показывает, сколько колебаний совершается за единицу времени: . Циклическая частота колебаний связана с частотой и периодом колебаний T соотношениями .

На слева рисунке изображены положения тела через одинаковые промежутки времени при гармонических колебаниях. Такую картину можно получить экспериментально при освещении колеблющегося тела короткими периодическими вспышками света (стробоскопическое освещение). Интервал времени между последовательными положениями тела равен 1/12 периода.

При колебательном движении тела вдоль прямой линии (ось OX) вектор скорости направлен всегда вдоль этой прямой.

(7) .

Появление слагаемого + π/2 в аргументе косинуса означает изменение начальной фазы. Максимальные по модулю значения скорости vm = ω m достигаются в те моменты времени, когда тело проходит через положения равновесия (x = 0). Аналогичным образом определяется ускорение a тела при гармонических колебаниях:

(8), где .

На рисунке слева приведены графики координаты, скорости и ускорения тела, совершающего гармонические колебания.

Для того, чтобы свободные колебания совершались по гармоническому закону, необходимо, чтобы сила, стремящаяся возвратить тело в положение равновесия, была пропорциональна смещению тела из положения равновесия и направлена в сторону, противоположную смещению:

(9).

Таким свойством обладает упругая сила в пределах применимости закона Гука: . Силы любой другой физической природы, удовлетворяющие этому условию, называются квазиупругими (как бы упругими)

Круговую частоту свободных колебаний ω0 груза на пружине можно найти из уравнения (9): , откуда или (10).

Частота ω0 называется собственной частотой колебательной системы. Все физические системы (не только механические), описываемые уравнением

(11),

способны совершать свободные гармонические колебания, так как решением этого уравнения являются гармонические функции вида (6). Уравнение (11) называется уравнением свободных колебаний. Следует обратить внимание на то, что физические свойства колебательной системы определяют только собственную частоту колебаний ω0 или период T. Такие параметры процесса колебаний, как амплитуда xm и начальная фаза φ0, определяются способом, с помощью которого система была выведена из состояния равновесия в начальный момент времени.

Крутильный маятник

Существует много разновидностей механических колебательных систем, в которых используются силы упругих деформаций. На рисунке слева показан горизонтально расположенный диск, висящий на упругой нити, закрепленной в его центре масс. При повороте диска на угол возникает момент сил M упругой деформации кручения: (12)

Это соотношение выражает закон Гука для деформации кручения. Величина μ аналогична жесткости пружины k.

Крутильный маятник широко используется в механических часах. Его называют балансиром. В балансире момент упругих сил создается с помощью спиралевидной пружинки.

Затухающие колебания

Рассмотрим колебания пружинного маятника, уравнение движения которого (согласно уравнению (4)) запишем в виде:

(13)

Первое слагаемое в данном уравнении характеризует силу трения, пропорциональную скорости маятника.

Введем обозначения . С учетом этого решением дифференциального уравнения (13) является выражение

(14)

Амплитуда и начальная фаза могут быть определены, если будут известны два значения смещения в произвольные моменты времени, т.е. так называемые начальные условия. Уравнение (14) описывает затухающие колебания.

Циклическая частота затухающих колебаний определяется выражением (15). Из (14) мы видим, что амплитуда колебаний будет со временем уменьшаться, а из (15) следует, что частота также уменьшается.

Однако во многих случаях, когда трение мало, уменьшением частоты можно пренебречь, и приближенно считать частоту свободных колебаний равной частоте собственных колебаний, т.е. . В этом случае периодичность движения сохраняется, но уравнения уже не являются гармоничными.

Характеристиками затухающих колебаний являются декремент затухания, определяемый из условия (16), а также логарифмический декремент затухания (17). Логарифмический декремент затухания является постоянной для данной колебательной системы величиной.

Наряду с декрементом пользуются понятием добротности (18). Добротность пропорциональна отношению полной энергии Wколебательной системы к энергии Wp , теряемой за период: (19). Чем выше добротность, тем медленнее затухают колебания.

Затухающие колебания происходят под действием сил, характерных для колебательной системы: силы упругости и силы трения. Однако незатухающие колебания можно получить с помощью внешних сил (см. уравнение (3)). Если внешняя сила периодична, то в системе возникают колебания с частотой изменения этой силы . При совпадении этой частоты с собственной частотой колебаний системы наблюдается резонанс, т.е. резкое увеличение амплитуды колебаний.

Механические волны

Если в каком-нибудь месте твердой, жидкой или газообразной среды возбуждены колебания частиц, то вследствие взаимодействия атомов и молекул среды колебания начинают передаваться от одной точки к другой с конечной скоростью. Процесс распространения колебаний в среде называется волной.

Механические волны бывают разных видов. Если при распространении волны частицы среды испытывают смещение в направлении, перпендикулярном направлению распространения, такая волна называется поперечной. Примером волны такого рода могут служить волны, бегущие по натянутому резиновому жгуту или по струне (рисунок слева).

Если смещение частиц среды происходит в направлении распространения волны, такая волна называется продольной. Волны в упругом стержне (рисунок справа) или звуковые волны в газе являются примерами таких волн.

Волны на поверхности жидкости имеют как поперечную, так и продольную компоненты.

Механические волны могут распространяются в твердых, жидких и газообразных средах. Продольные механические волны могут распространяться в любых средах – твердых, жидких и газообразных. В жидкостях и газах упругая деформация сдвига не возникает. Если один слой жидкости или газа сместить на некоторое расстояние относительно соседнего слоя, то никаких касательных сил на границе между слоями не появляется. Силы, действующие на границе жидкости и твердого тела, а также силы между соседними слоями жидкости всегда направлены по нормали к границе – это силы давления. То же относится к газообразной среде. Следовательно, поперечные волны не могут существовать в жидкой или газообразной средах.

Рассмотрим волну, которая распространяется в пространстве от источника, совершающего гармонические колебания. Если тело, являющееся источником колебаний, движется по закону y=ym cos (ωt) (20), то уравнение волны, распространяющейся от источника колебаний вдоль оси ОХ,будет иметь вид

(21),

где (22) называется волновым числом. Волновое число определяет количество волн, укладывающихся на отрезке м подобно тому, как циклическая частота ω определяет число периодов, укладывающихся на временном отрезке с.

Длиной волны λ называют расстояние между двумя соседними точками на оси OX, колеблющимися в одинаковых фазах. Расстояние, равное длине волны λ, волна пробегает за период T, следовательно, λ = vT (23), где v – скорость распространения волны.

Обращаем внимание, что волна, описываемая уравнением (21), движется вдоль оси ОХ, против оси ОХ будет двигаться волна, описываемая уравнением .

Скорость распространения упругой волны зависит от типа деформации и плотности среды, и вычисляется как (24), где Е – модуль соответствующей деформации (сжатия, сдвига, изгиба), ρ – плотность среды. Скорость распространения волны не имеет никакого отношения к скорости отдельных точек волны, и при малых амплитудах не зависит от амплитуды.

Например, при температуре 20 °С скорость распространения продольных волн в воде v ≈ 1480 м/с, в различных сортах стали v ≈ 5–6 км/с.

Что является источником волны?

Что является источником волны? При полете большого насекомого издается звук.Чем он вызывается?В чем заключается явление резонанса?

Голосование за лучший ответ

На первые два вопроса ответ — колебания) ) У насекомого — крыльев.
Резонанс — это наложение колебаний одинаковой частоты друг не друга. Причём колебания происходят в одной фазе.
удачи))

Похожие вопросы
Ваш браузер устарел

Мы постоянно добавляем новый функционал в основной интерфейс проекта. К сожалению, старые браузеры не в состоянии качественно работать с современными программными продуктами. Для корректной работы используйте последние версии браузеров Chrome, Mozilla Firefox, Opera, Microsoft Edge или установите браузер Atom.

Что является источником механических волн?

В непрерывной среде, состоящей из взаимодействующих между собой частиц, колебания частиц в одном месте вызывают вынужденные колебания соседних частиц, те в свою очередь вызывают колебания следующих за ними частиц и т. д.

Остальные ответы

Колебание тел.

Похожие вопросы

Ваш браузер устарел

Мы постоянно добавляем новый функционал в основной интерфейс проекта. К сожалению, старые браузеры не в состоянии качественно работать с современными программными продуктами. Для корректной работы используйте последние версии браузеров Chrome, Mozilla Firefox, Opera, Microsoft Edge или установите браузер Atom.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *