Какие аналоги индуктивности контура можно привести
Перейти к содержимому

Какие аналоги индуктивности контура можно привести

  • автор:

8.2. Индуктивность контура. Самоиндукция

По закону Био–Савара–Лапласа индукция магнитного поля пропорциональна току, текущему в контуре, т.е. В I. Магнитный поток пропорционален магнитной индукции, а значит, и току в контуре:

(8.2)

где коэффициент пропорциональности L называется индуктивностью контура. Тогда и приI = 1 А, L = Ф, т.е. индуктивность контура определяется величиной магнитного потока, сцепленного с контуром, в котором течет единичный ток. Единица индуктивности в СИ – 1 Генри [1 Гн = 1 Вб/1 А].

Индуктивность контура зависит от геометрической формы контура, его размеров и магнитных свойств среды, в которой он находится. В этом смысле индуктивность контура – аналог электроемкости уединенного проводника.

Проиллюстрируем это на примере соленоида. Полный магнитный поток через соленоид

. (8.3)

Если текущий в контуре ток изменяется, будет меняться и сцепленный с ним магнитный ток, а значит, в контуре будет индуцироваться ЭДС, которая в этом случае называется ЭДС самоиндукции , а явление ее возникновения называютсамоиндукцией. Применяя к этому явлению закон Фарадея (8.1) и учитывая, что в большинстве реальных ситуаций контур не деформируется и магнитная проницаемость среды не меняется, получим выражение для ЭДС самоиндукции (при условии L = const):

(8.4)

Отсюда при ,и индуктивностьL контура численно равна индуцированной в нем ЭДС самоиндукции при условии равенства скорости изменения тока в нем . Размерность

Выражение (8.4) хорошо иллюстрирует гибкость и вариативность проявления действия правила Ленца. Так, при возрастании тока в контуре Согласно уравнению (8.4)т.е. ток самоиндукции направлен навстречу току, обусловленному внешним источником, и тормозит его возрастание. В обратной ситуации при убывании тока в контуре (т.е.) согласно выражению (8.4) 0, т.е. индуцированный ток имеет такое же направление, как и убывающий ток в контуре, и замедляет его убывание. Таким образом, контур, обладая определенной индуктивностью, приобретает электрическую инертность, заключающуюся в том, что любые изменения тока тормозятся тем сильнее, чем больше индуктивность контура. Можно сказать, что роль индуктивности в электрических цепях аналогична роли массы в механике, т.е. индуктивность является мерой электрической инертности.

В качестве примера рассмотрим выключение тока в цепи, содержащей источник тока с ЭДС , резистор сопротивлениемR и катушку индуктивностью L. Под действием внешней ЭДС в цепи течет постоянный ток (считается, что внутренним сопротивлением источника можно пренебречь). Приt = 0 происходит отключение источника тока, ток начинает уменьшаться, и появляется ЭДС самоиндукции . Мгновенное значение тока (по закону Ома)или. Разделив переменные и проинтегрировав правую и левую часть этого уравнения поI (от I0 до I) и по t (от 0 до t), получим или

. (8.5)

Таким образом, при отключении ЭДС сила тока в цепи убывает по экспоненциальному закону (8.5). Чем больше индуктивность цепи и меньше ее сопротивление, тем медленнее уменьшается ток в цепи при ее размыкании. Оценим значение ЭДС самоиндукции , возникающей при размыкании цепи постоянного тока, т.е. при мгновенном увеличении сопротивления цепиот R0 до . Если цепь разомкнуть при установившемся токе, то далее ток изменяется в соответствии с уравнением (8.5)и при этом текущая ЭДС самоиндукции равна

(8.6)

Таким образом, при размыкании цепи и значительном увеличении сопротивления цепи , обладающей большой индуктивностью, ЭДС самоиндукции во много раз превышает ЭДС источника тока, включенного в цепь (из уравнения (8.6) получаем). Отсюда вытекает, что контур, содержащий индуктивность, нельзя резко размыкать, так как это (благодаря возникновению значительной ЭДС самоиндукции) может привести к пробою изоляции и выводу из строя измерительных приборов. Если в контуре сопротивление выводить постепенно, используя мощные «пусковые» реостаты, то ЭДС самоиндукции не достигнет больших значений. Аналогичное мероприятие необходимо осуществлять и при замыкании цепи постоянного тока.

§ 126. Индуктивность контура. Самоиндукция

Электрический ток, текущий в замкнутом контуре, создает вокруг себя магнитное поле, индукция которого, по закону Био — Савара—Лапласа (см. (110.2)), пропорциональна току. Сцепленный с контуром магнитный поток Ф поэтому пропорционален току I в контуре:

Ф=LI, (126.1)

где коэффициент пропорциональности L называется индуктивностью контура.

При изменении силы тока в контуре будет изменяться также и сцепленный с ним магнитный поток; следовательно, в контуре будет индуцироваться э.д.с. Возникновение э.д.с. индукции в проводящем контуре при изменении в нем силы тока называется самоиндукцией.

Из выражения (126.1) определяется единица индуктивности генри (Гн): 1 Гн — индуктивность такого контура, магнитный поток самоиндукции которого при токе в 1 А равен 1 Вб:

Рассчитаем индуктивность бесконечно длинного соленоида. Согласно (120.4), полный магнитный поток через соленоид

(потокосцепление) равен 0(N 2 I/l)S. Подставив это выражение в формулу (126.1), получим

т. е. индуктивность соленоида зависит от числа витков соленоида N, его длины l, площади S и магнитной проницаемости  вещества, из которого изготовлен сердечник соленоида.

Можно показать, что индуктивность контура в общем случае зависит только от геометрической формы контура, его размеров и магнитной проницаемости той среды, в которой он находится. В этом смысле индуктивность контура — аналог электрической емкости уединенного проводника, которая также зависит только от формы проводника, его размеров и диэлектрической проницаемости среды (см. §93).

Применяя к явлению самоиндукции закон Фарадея (см. (123.2)), получим, что э.д.с. самоиндукции

Если контур не деформируется и магнитная проницаемость среды не изменяется (в дальнейшем будет показано, что последнее условие выполняется не всегда), то L=const и

где знак минус, обусловленный правилом Ленца, показывает, что наличие индуктивности в контуре приводит к замедлению изменения тока в нем.

Если ток со временем возрастает, то

направлен навстречу току, обусловленному внешним источником, и тормозит его возрастание. Если ток со временем убыва-

ет, то dI/dts>0, т. е. индукционный

ток имеет такое же направление, как и убывающий ток в контуре, и замедляет его убывание. Таким образом, контур, обладая определенной индуктивностью, приобретает электрическую инертность, заключающуюся в том, что любое изменение тока тормозится тем сильнее, чем больше индуктивность контура.

§ 127. Токи при размыкании и замыкании цепи

При всяком изменении силы тока в проводящем контуре возникает э.д.с. самоиндукции, в результате чего в контуре появляются дополнительные токи, называемые экстратоками самоиндукции. Экстратоки самоиндукции, согласно правилу Ленца, всегда направлены так, чтобы препятствовать изменениям тока в цепи, т. е. направлены противоположно току, создаваемому источником. При выключении источника тока экстратоки имеют такое же направление, что и ослабевающий ток. Следовательно, наличие индуктивности в цепи приводит к замедлению исчезновения или установления тока в цепи.

Рассмотрим процесс выключения тока в цепи, содержащей источник тока с э.д.с. ξ, резистор сопротивлением R и катушку индуктивностью L. Под действием внешней э.д.с. в цепи течет постоянный ток

(внутренним сопротивлением источника тока пренебрегаем).

В момент времени t=0 отключим источник тока. Ток через катушку индуктивности L начнет уменьшаться, что приведет к возникновению э.д.с. самоиндукции ξs=-LdI/dt, препятствующей, согласно правилу Ленца, уменьшению тока. В каждый момент времени ток в цепи определяется законом Ома I=ξs/R, или

IR=-LdI/dt. (127.1)

Разделив в выражении (127.1) переменные, получим dI/I=(R/L)dt. Интегрируя

это уравнение по I (от I0 до I) и t (от 0 до t), находим ln(I/I0)=-Rt/L, или

где =L/R — постоянная, называемая временем релаксации. Из (127.2) следует, что т есть время, в течение которого сила тока уменьшается в е раз.

Таким образом, в процессе отключения источника э.д.с. сила тока убывает по экспоненциальному закону (127.2) и определяется кривой 1 на рис. 183. Чем больше индуктивность цепи и меньше ее сопротивление, тем больше т и, следовательно, тем медленнее уменьшается ток в цепи при ее размыкании.

При замыкании цепи помимо внешней э.д.с.ξ возникает э.д.с. самоиндукции

ξs=-LdI/dt, препятствующая, согласно

правилу Ленца, возрастанию тока. По закону Ома, IR=ξ+ξs, или

IR=ξ-LdI/dt.

Введя новую переменную u=IR-ξ, преобразуем это уравнение к виду du/u=-dt/,

где 1 — время релаксации.

В момент замыкания (t=0) сила тока I=0 и u=. Следовательно, интегрируя по и (от -ξ до IR ξ) и t (от 0 до t).

находим ln(IR-ξ)/-ξ=-t/, или

где I0/R — установившийся ток (при t)

Таким образом, в процессе включения источника э.д.с. нарастание силы тока в цепи задается функцией (127.3) и определяется кривой 2 на рис. 183. Сила тока возрастает от начального значения I=0 и асимптотически стремится к установившемуся значению I0=ξ/R. Скорость нарастания тока определяется тем же временем релаксации =L/R, что и убывание тока. Установление тока происходит тем быстрее, чем меньше индуктивность цепи и больше ее сопротивление.

Оценим значение э.д.с. самоиндукции ξs, возникающей при мгновенном увеличении сопротивления цепи постоянного тока от R0 До R. Предположим, что мы размыкаем контур, когда в нем течет установившийся ток I0=ξ/R0. При размыкании цепи ток изменяется по формуле (127.2). Подставив в нее выражение для I0 и , получим

т. е. при значительном увеличении сопротивления цепи (R/R0>>1) обладающей большой индуктивностью, э.д.с. самоиндукции может во много раз превышать э.д.с. источника тока, включенного в цепь. Таким образом, необходимо учитывать, что контур, содержащий индуктивность, нельзя резко размыкать, так как это (возникновение значительных э.д.с. самоиндукции) может привести к пробою изоляции и выводу из строя измерительных приборов. Если в контур сопротивление вводить постепенно, то э.д.с. самоиндукции не достигнет больших значений.

§ 126. Индуктивность контура. Самоиндукция

Электрический ток, текущий в замкнутом контуре, создает вокруг себя магнитное по­ле, индукция которого, по закону Био — Савара—Лапласа (см. (110.2)), пропор­циональна току. Сцепленный с контуром магнитный поток Ф поэтому пропорциона­лен току I в контуре:

Ф=LI, (126.1)

где коэффициент пропорциональности L называется индуктивностью контура.

При изменении силы тока в контуре будет изменяться также и сцепленный с ним магнитный поток; следовательно, в контуре будет индуцироваться э.д.с. Возникновение э.д.с. индукции в прово­дящем контуре при изменении в нем силы тока называется самоиндукцией.

Из выражения (126.1) определяется единица индуктивности генри (Гн): 1 Гн — индуктивность такого контура, магнитный поток самоиндукции которого при токе в 1 А равен 1 Вб:

Рассчитаем индуктивность бесконечно длинного соленоида. Согласно (120.4), полный магнитный поток через соленоид

(потокосцепление) равен 0(N 2 I/l)S. Под­ставив это выражение в формулу (126.1), получим

т. е. индуктивность соленоида зависит от числа витков соленоида N, его длины l, площади S и магнитной проницаемости  вещества, из которого изготовлен сердеч­ник соленоида.

Можно показать, что индуктивность контура в общем случае зависит только от геометрической формы контура, его разме­ров и магнитной проницаемости той среды, в которой он находится. В этом смысле индуктивность контура — аналог электри­ческой емкости уединенного проводника, которая также зависит только от формы проводника, его размеров и диэлектриче­ской проницаемости среды (см. §93).

Применяя к явлению самоиндукции закон Фарадея (см. (123.2)), получим, что э.д.с. самоиндукции

Если контур не деформируется и магнит­ная проницаемость среды не изменяется (в дальнейшем будет показано, что по­следнее условие выполняется не всегда), то L=const и

где знак минус, обусловленный правилом Ленца, показывает, что наличие индуктив­ности в контуре приводит к замедлению изменения тока в нем.

Если ток со временем возрастает, то

направлен навстречу току, обусловленно­му внешним источником, и тормозит его возрастание. Если ток со временем убыва-

ет, то dI/dts>0, т. е. индукционный

ток имеет такое же направление, как и убывающий ток в контуре, и замедляет его убывание. Таким образом, контур, об­ладая определенной индуктивностью, при­обретает электрическую инертность, за­ключающуюся в том, что любое изменение тока тормозится тем сильнее, чем больше индуктивность контура.

§ 127. Токи при размыкании и замыкании цепи

При всяком изменении силы тока в про­водящем контуре возникает э.д.с. само­индукции, в результате чего в контуре появляются дополнительные токи, называ­емые экстратоками самоиндукции. Экстра­токи самоиндукции, согласно правилу Ленца, всегда направлены так, чтобы пре­пятствовать изменениям тока в цепи, т. е. направлены противоположно току, со­здаваемому источником. При выключении источника тока экстратоки имеют такое же направление, что и ослабевающий ток. Следовательно, наличие индуктивности в цепи приводит к замедлению исчезнове­ния или установления тока в цепи.

Рассмотрим процесс выключения тока в цепи, содержащей источник тока с э.д.с. ξ, резистор сопротивлением R и катушку индуктивностью L. Под дей­ствием внешней э.д.с. в цепи течет по­стоянный ток

(внутренним сопротивлением источника тока пренебрегаем).

В момент времени t=0 отключим источник тока. Ток через катушку индук­тивности L начнет уменьшаться, что при­ведет к возникновению э.д.с. самоиндук­ции ξs=-LdI/dt, препятствующей, со­гласно правилу Ленца, уменьшению тока. В каждый момент времени ток в цепи определяется законом Ома I=ξs/R, или

IR=-LdI/dt. (127.1)

Разделив в выражении (127.1) переменные, получим dI/I=(R/L)dt. Интегрируя

это уравнение по I (от I0 до I) и t (от 0 до t), находим ln(I/I0)=-Rt/L, или

где =L/R — постоянная, называемая временем релаксации. Из (127.2) следует, что т есть время, в течение которого сила тока уменьшается в е раз.

Таким образом, в процессе отключения источника э.д.с. сила тока убывает по экспоненциальному закону (127.2) и опре­деляется кривой 1 на рис. 183. Чем больше индуктивность цепи и меньше ее сопро­тивление, тем больше т и, следовательно, тем медленнее уменьшается ток в цепи при ее размыкании.

При замыкании цепи помимо внешней э.д.с.ξ возникает э.д.с. самоиндукции

ξs=-LdI/dt, препятствующая, согласно

правилу Ленца, возрастанию тока. По за­кону Ома, IR=ξ+ξs, или

IR=ξ-LdI/dt.

Введя новую переменную u=IR-ξ, пре­образуем это уравнение к виду du/u=-dt/,

где 1 — время релаксации.

В момент замыкания (t=0) сила тока I=0 и u=. Следовательно, интегри­руя по и (от -ξ до IR ξ) и t (от 0 до t).

находим ln(IR-ξ)/-ξ=-t/, или

где I0/R — установившийся ток (при t)

Таким образом, в процессе включения источника э.д.с. нарастание силы тока в цепи задается функцией (127.3) и опре­деляется кривой 2 на рис. 183. Сила тока возрастает от начального значения I=0 и асимптотически стремится к устано­вившемуся значению I0=ξ/R. Скорость нарастания тока определяется тем же вре­менем релаксации =L/R, что и убыва­ние тока. Установление тока происходит тем быстрее, чем меньше индуктивность цепи и больше ее сопротивление.

Оценим значение э.д.с. самоиндук­ции ξs, возникающей при мгновенном уве­личении сопротивления цепи постоянного тока от R0 До R. Предположим, что мы размыкаем контур, когда в нем течет уста­новившийся ток I0=ξ/R0. При размыка­нии цепи ток изменяется по формуле (127.2). Подставив в нее выражение для I0 и , получим

т. е. при значительном увеличении сопро­тивления цепи (R/R0>>1) обладающей большой индуктивностью, э.д.с. самоин­дукции может во много раз превышать э.д.с. источника тока, включенного в цепь. Таким образом, необходимо учиты­вать, что контур, содержащий индуктив­ность, нельзя резко размыкать, так как это (возникновение значительных э.д.с. само­индукции) может привести к пробою изо­ляции и выводу из строя измерительных приборов. Если в контур сопротивление вводить постепенно, то э.д.с. самоиндук­ции не достигнет больших значений.

У вас большие запросы!

Точнее, от вашего браузера их поступает слишком много, и сервер VK забил тревогу.

Эта страница была загружена по HTTP, вместо безопасного HTTPS, а значит телепортации обратно не будет.
Обратитесь в поддержку сервиса.

Вы отключили сохранение Cookies, а они нужны, чтобы решить проблему.

Почему-то страница не получила всех данных, а без них она не работает.
Обратитесь в поддержку сервиса.

Вы вернётесь на предыдущую страницу через 5 секунд.
Вернуться назад

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *