8.2. Индуктивность контура. Самоиндукция
По закону Био–Савара–Лапласа индукция магнитного поля пропорциональна току, текущему в контуре, т.е. В I. Магнитный поток пропорционален магнитной индукции, а значит, и току в контуре:
(8.2)
где коэффициент пропорциональности L называется индуктивностью контура. Тогда и приI = 1 А, L = Ф, т.е. индуктивность контура определяется величиной магнитного потока, сцепленного с контуром, в котором течет единичный ток. Единица индуктивности в СИ – 1 Генри [1 Гн = 1 Вб/1 А].
Индуктивность контура зависит от геометрической формы контура, его размеров и магнитных свойств среды, в которой он находится. В этом смысле индуктивность контура – аналог электроемкости уединенного проводника.
Проиллюстрируем это на примере соленоида. Полный магнитный поток через соленоид
. (8.3)
Если текущий в контуре ток изменяется, будет меняться и сцепленный с ним магнитный ток, а значит, в контуре будет индуцироваться ЭДС, которая в этом случае называется ЭДС самоиндукции , а явление ее возникновения называютсамоиндукцией. Применяя к этому явлению закон Фарадея (8.1) и учитывая, что в большинстве реальных ситуаций контур не деформируется и магнитная проницаемость среды не меняется, получим выражение для ЭДС самоиндукции (при условии L = const):
(8.4)
Отсюда при ,
и индуктивностьL контура численно равна индуцированной в нем ЭДС самоиндукции при условии равенства скорости изменения тока в нем
. Размерность
Выражение (8.4) хорошо иллюстрирует гибкость и вариативность проявления действия правила Ленца. Так, при возрастании тока в контуре Согласно уравнению (8.4)
т.е. ток самоиндукции направлен навстречу току, обусловленному внешним источником, и тормозит его возрастание. В обратной ситуации при убывании тока в контуре (т.е.
) согласно выражению (8.4)
0, т.е. индуцированный ток имеет такое же направление, как и убывающий ток в контуре, и замедляет его убывание. Таким образом, контур, обладая определенной индуктивностью, приобретает электрическую инертность, заключающуюся в том, что любые изменения тока тормозятся тем сильнее, чем больше индуктивность контура. Можно сказать, что роль индуктивности в электрических цепях аналогична роли массы в механике, т.е. индуктивность является мерой электрической инертности.
В качестве примера рассмотрим выключение тока в цепи, содержащей источник тока с ЭДС , резистор сопротивлениемR и катушку индуктивностью L. Под действием внешней ЭДС в цепи течет постоянный ток
(считается, что внутренним сопротивлением источника можно пренебречь). Приt = 0 происходит отключение источника тока, ток начинает уменьшаться, и появляется ЭДС самоиндукции
. Мгновенное значение тока (по закону Ома)
или
. Разделив переменные и проинтегрировав правую и левую часть этого уравнения поI (от I0 до I) и по t (от 0 до t), получим
или
. (8.5)
Таким образом, при отключении ЭДС сила тока в цепи убывает по экспоненциальному закону (8.5). Чем больше индуктивность цепи и меньше ее сопротивление, тем медленнее уменьшается ток в цепи при ее размыкании. Оценим значение ЭДС самоиндукции , возникающей при размыкании цепи постоянного тока, т.е. при мгновенном увеличении сопротивления цепиот R0 до
. Если цепь разомкнуть при установившемся токе
, то далее ток изменяется в соответствии с уравнением (8.5)
и при этом текущая ЭДС самоиндукции равна
(8.6)
Таким образом, при размыкании цепи и значительном увеличении сопротивления цепи , обладающей большой индуктивностью, ЭДС самоиндукции во много раз превышает ЭДС источника тока, включенного в цепь (из уравнения (8.6) получаем
). Отсюда вытекает, что контур, содержащий индуктивность, нельзя резко размыкать, так как это (благодаря возникновению значительной ЭДС самоиндукции) может привести к пробою изоляции и выводу из строя измерительных приборов. Если в контуре сопротивление выводить постепенно, используя мощные «пусковые» реостаты, то ЭДС самоиндукции не достигнет больших значений. Аналогичное мероприятие необходимо осуществлять и при замыкании цепи постоянного тока.
§ 126. Индуктивность контура. Самоиндукция
Электрический ток, текущий в замкнутом контуре, создает вокруг себя магнитное поле, индукция которого, по закону Био — Савара—Лапласа (см. (110.2)), пропорциональна току. Сцепленный с контуром магнитный поток Ф поэтому пропорционален току I в контуре:
Ф=LI, (126.1)
где коэффициент пропорциональности L называется индуктивностью контура.
При изменении силы тока в контуре будет изменяться также и сцепленный с ним магнитный поток; следовательно, в контуре будет индуцироваться э.д.с. Возникновение э.д.с. индукции в проводящем контуре при изменении в нем силы тока называется самоиндукцией.
Из выражения (126.1) определяется единица индуктивности генри (Гн): 1 Гн — индуктивность такого контура, магнитный поток самоиндукции которого при токе в 1 А равен 1 Вб:
Рассчитаем индуктивность бесконечно длинного соленоида. Согласно (120.4), полный магнитный поток через соленоид
(потокосцепление) равен 0(N 2 I/l)S. Подставив это выражение в формулу (126.1), получим
т. е. индуктивность соленоида зависит от числа витков соленоида N, его длины l, площади S и магнитной проницаемости вещества, из которого изготовлен сердечник соленоида.
Можно показать, что индуктивность контура в общем случае зависит только от геометрической формы контура, его размеров и магнитной проницаемости той среды, в которой он находится. В этом смысле индуктивность контура — аналог электрической емкости уединенного проводника, которая также зависит только от формы проводника, его размеров и диэлектрической проницаемости среды (см. §93).
Применяя к явлению самоиндукции закон Фарадея (см. (123.2)), получим, что э.д.с. самоиндукции
Если контур не деформируется и магнитная проницаемость среды не изменяется (в дальнейшем будет показано, что последнее условие выполняется не всегда), то L=const и
где знак минус, обусловленный правилом Ленца, показывает, что наличие индуктивности в контуре приводит к замедлению изменения тока в нем.
Если ток со временем возрастает, то
направлен навстречу току, обусловленному внешним источником, и тормозит его возрастание. Если ток со временем убыва-
ет, то dI/dts>0, т. е. индукционный
ток имеет такое же направление, как и убывающий ток в контуре, и замедляет его убывание. Таким образом, контур, обладая определенной индуктивностью, приобретает электрическую инертность, заключающуюся в том, что любое изменение тока тормозится тем сильнее, чем больше индуктивность контура.
§ 127. Токи при размыкании и замыкании цепи
При всяком изменении силы тока в проводящем контуре возникает э.д.с. самоиндукции, в результате чего в контуре появляются дополнительные токи, называемые экстратоками самоиндукции. Экстратоки самоиндукции, согласно правилу Ленца, всегда направлены так, чтобы препятствовать изменениям тока в цепи, т. е. направлены противоположно току, создаваемому источником. При выключении источника тока экстратоки имеют такое же направление, что и ослабевающий ток. Следовательно, наличие индуктивности в цепи приводит к замедлению исчезновения или установления тока в цепи.
Рассмотрим процесс выключения тока в цепи, содержащей источник тока с э.д.с. ξ, резистор сопротивлением R и катушку индуктивностью L. Под действием внешней э.д.с. в цепи течет постоянный ток
(внутренним сопротивлением источника тока пренебрегаем).
В момент времени t=0 отключим источник тока. Ток через катушку индуктивности L начнет уменьшаться, что приведет к возникновению э.д.с. самоиндукции ξs=-LdI/dt, препятствующей, согласно правилу Ленца, уменьшению тока. В каждый момент времени ток в цепи определяется законом Ома I=ξs/R, или
IR=-LdI/dt. (127.1)
Разделив в выражении (127.1) переменные, получим dI/I=—(R/L)dt. Интегрируя
это уравнение по I (от I0 до I) и t (от 0 до t), находим ln(I/I0)=-Rt/L, или
где =L/R — постоянная, называемая временем релаксации. Из (127.2) следует, что т есть время, в течение которого сила тока уменьшается в е раз.
Таким образом, в процессе отключения источника э.д.с. сила тока убывает по экспоненциальному закону (127.2) и определяется кривой 1 на рис. 183. Чем больше индуктивность цепи и меньше ее сопротивление, тем больше т и, следовательно, тем медленнее уменьшается ток в цепи при ее размыкании.
При замыкании цепи помимо внешней э.д.с.ξ возникает э.д.с. самоиндукции
ξs=-LdI/dt, препятствующая, согласно
правилу Ленца, возрастанию тока. По закону Ома, IR=ξ+ξs, или
IR=ξ-LdI/dt.
Введя новую переменную u=IR-ξ, преобразуем это уравнение к виду du/u=-dt/,
где 1 — время релаксации.
В момент замыкания (t=0) сила тока I=0 и u=-ξ. Следовательно, интегрируя по и (от -ξ до IR — ξ) и t (от 0 до t).
находим ln(IR-ξ)/-ξ=-t/, или
где I0=ξ/R — установившийся ток (при t)
Таким образом, в процессе включения источника э.д.с. нарастание силы тока в цепи задается функцией (127.3) и определяется кривой 2 на рис. 183. Сила тока возрастает от начального значения I=0 и асимптотически стремится к установившемуся значению I0=ξ/R. Скорость нарастания тока определяется тем же временем релаксации =L/R, что и убывание тока. Установление тока происходит тем быстрее, чем меньше индуктивность цепи и больше ее сопротивление.
Оценим значение э.д.с. самоиндукции ξs, возникающей при мгновенном увеличении сопротивления цепи постоянного тока от R0 До R. Предположим, что мы размыкаем контур, когда в нем течет установившийся ток I0=ξ/R0. При размыкании цепи ток изменяется по формуле (127.2). Подставив в нее выражение для I0 и , получим
т. е. при значительном увеличении сопротивления цепи (R/R0>>1) обладающей большой индуктивностью, э.д.с. самоиндукции может во много раз превышать э.д.с. источника тока, включенного в цепь. Таким образом, необходимо учитывать, что контур, содержащий индуктивность, нельзя резко размыкать, так как это (возникновение значительных э.д.с. самоиндукции) может привести к пробою изоляции и выводу из строя измерительных приборов. Если в контур сопротивление вводить постепенно, то э.д.с. самоиндукции не достигнет больших значений.
§ 126. Индуктивность контура. Самоиндукция
Электрический ток, текущий в замкнутом контуре, создает вокруг себя магнитное поле, индукция которого, по закону Био — Савара—Лапласа (см. (110.2)), пропорциональна току. Сцепленный с контуром магнитный поток Ф поэтому пропорционален току I в контуре:
Ф=LI, (126.1)
где коэффициент пропорциональности L называется индуктивностью контура.
При изменении силы тока в контуре будет изменяться также и сцепленный с ним магнитный поток; следовательно, в контуре будет индуцироваться э.д.с. Возникновение э.д.с. индукции в проводящем контуре при изменении в нем силы тока называется самоиндукцией.
Из выражения (126.1) определяется единица индуктивности генри (Гн): 1 Гн — индуктивность такого контура, магнитный поток самоиндукции которого при токе в 1 А равен 1 Вб:
Рассчитаем индуктивность бесконечно длинного соленоида. Согласно (120.4), полный магнитный поток через соленоид
(потокосцепление) равен 0(N 2 I/l)S. Подставив это выражение в формулу (126.1), получим
т. е. индуктивность соленоида зависит от числа витков соленоида N, его длины l, площади S и магнитной проницаемости вещества, из которого изготовлен сердечник соленоида.
Можно показать, что индуктивность контура в общем случае зависит только от геометрической формы контура, его размеров и магнитной проницаемости той среды, в которой он находится. В этом смысле индуктивность контура — аналог электрической емкости уединенного проводника, которая также зависит только от формы проводника, его размеров и диэлектрической проницаемости среды (см. §93).
Применяя к явлению самоиндукции закон Фарадея (см. (123.2)), получим, что э.д.с. самоиндукции
Если контур не деформируется и магнитная проницаемость среды не изменяется (в дальнейшем будет показано, что последнее условие выполняется не всегда), то L=const и
где знак минус, обусловленный правилом Ленца, показывает, что наличие индуктивности в контуре приводит к замедлению изменения тока в нем.
Если ток со временем возрастает, то
направлен навстречу току, обусловленному внешним источником, и тормозит его возрастание. Если ток со временем убыва-
ет, то dI/dts>0, т. е. индукционный
ток имеет такое же направление, как и убывающий ток в контуре, и замедляет его убывание. Таким образом, контур, обладая определенной индуктивностью, приобретает электрическую инертность, заключающуюся в том, что любое изменение тока тормозится тем сильнее, чем больше индуктивность контура.
§ 127. Токи при размыкании и замыкании цепи
При всяком изменении силы тока в проводящем контуре возникает э.д.с. самоиндукции, в результате чего в контуре появляются дополнительные токи, называемые экстратоками самоиндукции. Экстратоки самоиндукции, согласно правилу Ленца, всегда направлены так, чтобы препятствовать изменениям тока в цепи, т. е. направлены противоположно току, создаваемому источником. При выключении источника тока экстратоки имеют такое же направление, что и ослабевающий ток. Следовательно, наличие индуктивности в цепи приводит к замедлению исчезновения или установления тока в цепи.
Рассмотрим процесс выключения тока в цепи, содержащей источник тока с э.д.с. ξ, резистор сопротивлением R и катушку индуктивностью L. Под действием внешней э.д.с. в цепи течет постоянный ток
(внутренним сопротивлением источника тока пренебрегаем).
В момент времени t=0 отключим источник тока. Ток через катушку индуктивности L начнет уменьшаться, что приведет к возникновению э.д.с. самоиндукции ξs=-LdI/dt, препятствующей, согласно правилу Ленца, уменьшению тока. В каждый момент времени ток в цепи определяется законом Ома I=ξs/R, или
IR=-LdI/dt. (127.1)
Разделив в выражении (127.1) переменные, получим dI/I=—(R/L)dt. Интегрируя
это уравнение по I (от I0 до I) и t (от 0 до t), находим ln(I/I0)=-Rt/L, или
где =L/R — постоянная, называемая временем релаксации. Из (127.2) следует, что т есть время, в течение которого сила тока уменьшается в е раз.
Таким образом, в процессе отключения источника э.д.с. сила тока убывает по экспоненциальному закону (127.2) и определяется кривой 1 на рис. 183. Чем больше индуктивность цепи и меньше ее сопротивление, тем больше т и, следовательно, тем медленнее уменьшается ток в цепи при ее размыкании.
При замыкании цепи помимо внешней э.д.с.ξ возникает э.д.с. самоиндукции
ξs=-LdI/dt, препятствующая, согласно
правилу Ленца, возрастанию тока. По закону Ома, IR=ξ+ξs, или
IR=ξ-LdI/dt.
Введя новую переменную u=IR-ξ, преобразуем это уравнение к виду du/u=-dt/,
где 1 — время релаксации.
В момент замыкания (t=0) сила тока I=0 и u=-ξ. Следовательно, интегрируя по и (от -ξ до IR — ξ) и t (от 0 до t).
находим ln(IR-ξ)/-ξ=-t/, или
где I0=ξ/R — установившийся ток (при t)
Таким образом, в процессе включения источника э.д.с. нарастание силы тока в цепи задается функцией (127.3) и определяется кривой 2 на рис. 183. Сила тока возрастает от начального значения I=0 и асимптотически стремится к установившемуся значению I0=ξ/R. Скорость нарастания тока определяется тем же временем релаксации =L/R, что и убывание тока. Установление тока происходит тем быстрее, чем меньше индуктивность цепи и больше ее сопротивление.
Оценим значение э.д.с. самоиндукции ξs, возникающей при мгновенном увеличении сопротивления цепи постоянного тока от R0 До R. Предположим, что мы размыкаем контур, когда в нем течет установившийся ток I0=ξ/R0. При размыкании цепи ток изменяется по формуле (127.2). Подставив в нее выражение для I0 и , получим
т. е. при значительном увеличении сопротивления цепи (R/R0>>1) обладающей большой индуктивностью, э.д.с. самоиндукции может во много раз превышать э.д.с. источника тока, включенного в цепь. Таким образом, необходимо учитывать, что контур, содержащий индуктивность, нельзя резко размыкать, так как это (возникновение значительных э.д.с. самоиндукции) может привести к пробою изоляции и выводу из строя измерительных приборов. Если в контур сопротивление вводить постепенно, то э.д.с. самоиндукции не достигнет больших значений.
У вас большие запросы!
Точнее, от вашего браузера их поступает слишком много, и сервер VK забил тревогу.
Эта страница была загружена по HTTP, вместо безопасного HTTPS, а значит телепортации обратно не будет.
Обратитесь в поддержку сервиса.
Вы отключили сохранение Cookies, а они нужны, чтобы решить проблему.
Почему-то страница не получила всех данных, а без них она не работает.
Обратитесь в поддержку сервиса.
Вы вернётесь на предыдущую страницу через 5 секунд.
Вернуться назад