Что такое режим холостого хода
Перейти к содержимому

Что такое режим холостого хода

  • автор:

У вас большие запросы!

Точнее, от вашего браузера их поступает слишком много, и сервер VK забил тревогу.

Эта страница была загружена по HTTP, вместо безопасного HTTPS, а значит телепортации обратно не будет.
Обратитесь в поддержку сервиса.

Вы отключили сохранение Cookies, а они нужны, чтобы решить проблему.

Почему-то страница не получила всех данных, а без них она не работает.
Обратитесь в поддержку сервиса.

Вы вернётесь на предыдущую страницу через 5 секунд.
Вернуться назад

1.6. Холостой ход и короткое замыкание тока.

В режиме холостого хода внешняя цепь разомкнута (рис. 1.8.) При этом ее сопротивление равно бесконечности, а величина тока в цепи равна нулю. Следовательно, напряжение на зажимах генератора: Uxx= E.

Короткое замыкание возникает обычно в результате повреждения изоляции соединительных проводов. При этом зажимы генератора оказываются замкнуты проводником с ничтожно малым сопротивлением (рис. 1.9).

Рис. 1.9 Режим короткого замыкания.

Практически напряжение на зажимах генератора в режиме короткого замыкания равно нулю, и сопротивление цепи равно внутреннему сопротивлению генератора R0. Так как R0 обычно мало, величина тока короткого замыкания Iкз= оказывается очень большой.

Короткое замыкание является аварийным режимом работы и представляет собой большую опасность для электрических установок, т.к. может повлечь за собой их разрушение, вследствие перегрева, вызванного большими токами.

1.7. Расчет сложных электрических цепей постоянного тока.

Приведем основные понятия сложной цепи. Несколько последовательно соединенных элементов цепи, по которым проходит один и тот же ток, образуют ветвь. В общем случае ветвь может содержать как сопротивления, так и ЭДС.

Точка соединения трех и более ветвей называют узловой точкой или узлом.

Несколько ветвей, образующих замкнутую электрическую цепь называют контуром.

1.7.1. Метод непосредственного применения законов Кирхгофа

Универсальным методом расчета токов в сложных цепях постоянного тока с несколькими источниками электрической энергии, является метод непосредственного применения I и II законов Кирхгофа.

К узловым точкам схемы применяется I закон Кирхгофа, согласно которому сумма токов, притекающих к узлу равна сумме токов уходящих от него, т.е. алгебраическая сумма токов в узле равна нулю. ∑I =0

К контурам применяется II закон Кирхгофа, согласно которому алгебраическая сумма ЭДС, действующих в контуре, равна сумме падений напряжений на всех сопротивлениях контура.

По первому и второму законам Кирхгофа составляют столько уравнений, сколько неизвестных токов в цепи. По первому закону Кирхгофа составляют n-1 уравнений, где n – число узлов в цепи. Недостающие уравнения составляют по второму закону Кирхгофа.

Рассмотрим применение метода на примере сложной электрической цепи, схема которой представлена на рис. 1.10

Рис. 1.10. Сложная электрическая цепь постоянного тока.

Расчет токов, протекающих в ветвях сложной цепи, проводят по следующим правилам:

  1. По возможности упрощают схему, заменяя параллельно соединенные сопротивления одним эквивалентным. Для рассматриваемой схемы имеем

R567 =

  1. Определяют количество искомых токов в цепи и произвольно задают их направления. Количество искомых токов равно количеству ветвей в цепи. В рассматриваемой цепи после упрощения остается три ветви abcd, ad, afed, следовательно, требуется найти значения трех токов I1, I2, I3, для чего необходимо составить три уравнения по законам Кирхгофа.
  2. Определяют количество узлов в цепи и для всех узловых точек, кроме одной составляют уравнения по первому закону Кирхгофа. В рассматриваемой цепи две узловые точки a и d. Поэтому, по первому закону Кирхгофа составляется одно уравнение для узловой точки a, в соответствии с заданными направлениями токов

I1 + I2 = I3 (1.11)

  1. Выбирают произвольное направление обхода контуров по или против часовой стрелки и по второму закону Кирхгофа составляют недостающие уравнения. Для рассматриваемой цепи необходимо составить еще два уравнения. Они составляются по второму закону Кирхгофа, для контуров adef и abcd в соответствии с выбранными направлениями их обхода. При этом ЭДС и токи, совпадающие с направлением обхода контура, принимают со знаком плюс, а ЭДС и токи, противоположные этому направлению, со знаком минус. В результате получаем

E1 = I1 (R1+R2+R3) + I3R8 (1.12) E2 = I2 (R567+R4) + I3R8 (1.13) 5. Определяют неизвестные токи в ветвях, решая полученную систему уравнений (1.11), (1.12), (1.13). Если какие-то значения при расчете получаются со знаком минус, то это означает, что направления реальных токов противоположны заданным в начале расчета. Проверку решения задачи осуществляют путем расчета уравнения баланса мощностей: алгебраическая сумма мощностей развиваемых всеми источниками ЭДС равна сумме мощностей, потребляемых всеми сопротивлениями нагрузки. В общем виде уравнение баланса мощностей записывается как ∑EI=∑I 2 R. Применительно к рассматриваемой цепи, уравнение баланса мощностей принимает вид: E1I1+E2I2 = I(R1+R2+R3) + I(R4+R567) +IR8 (1.14) Если направление ЭДС совпадает с направлением тока в ветви, то их произведение включается в левую часть уравнения со знаком плюс, а если не сLine 363Line 364Line 365Line 366овпадает, то со знаком минус, т.е.E I (+) и EI (-). Если расчет токов проведен правильно, то левая часть уравнения (1.14) равна его правой части.

6.3 Работа трансформатора в режиме холостого хода

Режим холостого хода – такой режим работы электрического трансформатора, при котором его вторичная цепь разомкнута, и ток в ней равен нулю (i2 = 0).

Под действием приложенного напряжения u1 по первичной обмотке протекает ток , возбуждающий в магнитопроводе магнитное поле .

Большая часть магнитного потока замыкается в магнитопроводе. Однако небольшая часть этого потока замыкается вокруг витков только первичной обмотки, образуя поток рассеяния, и не индуктирует напряжение взаимоиндукции во вторичной обмотке.

В первичной обмотке индуктирует напряжение

(6.8)

где – индуктивность рассеяния первичной обмотки электрического трансформатора;

– индуктивное сопротивление рассеяния этой обмотки.

Кроме того, первичная обмотка обладает резистивным сопротивлением r1. На рисунке 6.2 представлена схема замещения электрического трансформатора с учетом резистивных сопротивлений r1 и r2 первичной и вторичной обмоток и их индуктивностей рассеяния и

Рисунок 6.2. — Схема замещения трансформатора в режиме холостого хода

Составим уравнение для первичной цепи по II закону Кирхгофа в комплексной форме

(6.9)

Рисунок 6.3. — Векторная диаграмма напряжений и тока трансформатора в режиме холостого хода

На рисунке 6.3 представлена векторная диаграмма напряжений и токов, построенная в соответствии с (6.9).

Опытом холостого хода называется испытание электрического трансформатора при разомкнутой цепи вторичной обмотки и номинальном приложенном к первичной обмотке напряжении .

Для проведения опыта холостого хода собирается электрическая цепь согласно схеме рисунка 6.4.

Рисунок 6.4. — Схема электрической цепи для проведения опыта холостого хода трансформатора

При ток составляет 3. 10 % от номинального первичного тока . Следовательно, в формуле (6.9) слагаемыми и можно пренебречь. Тогда имеем:

(6.10)

При разомкнутой цепи вторичной обмотки

(6.11)

поэтому, измерив вольтметром PV1 первичное напряжение и вольтметром PV2 – вторичное напряжение , определяют коэффициент трансформации по напряжению

(6.12)

Этот коэффициент указывается на щитках электрических трансформаторов как отношение высшего напряжения к низшему (например К = 6000/230).

При холостом ходе и мощность потерь в проводах первичной обмотки (потери в меди) мала по сравнению с потерями на вихревые токи (потери в стали) . Поэтому в опыте холостого хода по показаниям ваттметра определяют мощность потерь в магнитопроводе.

6.4 Опыт короткого замыкания

Необходимо различать опыт короткого замыкания и режим короткого замыкания, так как в последнем случае имеет место аварийный режим электрического трансформатора, при котором он сильно разогревается может произойти сгорание трансформатора.

Опыт короткого замыкания — испытание электрического трансформатора при короткозамкнутой цепи вторичной обмотки и номинальном токе в первичной обмотке

. (6.13)

Этот опыт проводится при аттестации электрического трансформатора для определения важнейших параметров:

  • мощности потерь в проводах обмоток (потери в меди) ;
  • внутреннего падения напряжения;
  • коэффициента трансформации и др.

Опыт короткого замыкания (рис.6.5), как и опыт холостого хода, обязателен при заводских испытаниях. Рисунок 6.5. — Схема электрической цепи для проведения опыта короткого замыкания трансформатора В опыте короткого замыкания (U2 = 0) напряжение UM2k, индуктируемое во второй обмотке равно (6.14) где – напряжение на резистивном сопротивлении вторичной обмотки; –напряжение на индуктивном сопротивлении рассеяния вторичной обмотки. Напряжение первичной обмотки в опыте короткого замыкания при токе составляет 5. 10 % от номинального. Поэтому действующее значение напряжения индукции UM2k составляет лишь 2. 5 % от действующего значения UM2 в рабочем (номинальном) режиме. Пропорционально значению UM2уменьшается магнитный поток в магнитопроводе, а вместе с ним и мощность потерь в магнитопроводе , пропорциональная Следовательно, в опыте короткого замыкания почти вся мощность трансформатора равна мощности потерь в проводах первичной и вторичной обмоток (потери в меди): (6.15) Значение этой мощности определяется по показаниям ваттметра (рис.6.5). и — токи в опыте короткого замыкания соответствующих обмоток трансформатора, определяемые по показаниям амперметров и При коротком замыкании в уравнении (6.7) составляющая ничтожно мала, по сравнению с двумя другими составляющими, и ею можно пренебречь, следовательно и коэффициент трансформации Таким образом, опыт короткого замыкания может служить для определения коэффициента трансформации К.

У вас большие запросы!

Точнее, от вашего браузера их поступает слишком много, и сервер VK забил тревогу.

Эта страница была загружена по HTTP, вместо безопасного HTTPS, а значит телепортации обратно не будет.
Обратитесь в поддержку сервиса.

Вы отключили сохранение Cookies, а они нужны, чтобы решить проблему.

Почему-то страница не получила всех данных, а без них она не работает.
Обратитесь в поддержку сервиса.

Вы вернётесь на предыдущую страницу через 5 секунд.
Вернуться назад

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *