Как найти полное сопротивление цепи
Перейти к содержимому

Как найти полное сопротивление цепи

  • автор:

Что такое электрический импеданс

Полное сопротивление (импеданс) — комплексная величина электрической цепи, выраженная действительным сопротивлением и мнимым реактивным сопротивлением, препятствующая прохождению электрического тока. При измерении импеданса мы всегда должны питать цепь переменным током, в случае постоянного тока мы будем измерять только действительную составляющую импеданса.

Значение импеданса

В цепях постоянного тока активное сопротивление R играет важную роль. Что касается цепей синусоидального переменного тока, то здесь не обойтись одним лишь активным сопротивлением. Ведь если в цепях постоянного тока емкости и индуктивности заметны только при переходных процессах, то в цепях переменного тока данные компоненты проявляют себя гораздо более значительно.

Поэтому для адекватного расчета цепей переменного тока вводится термин «электрический импеданс» — Z или комплексное (полное) сопротивление двухполюсника гармоническому сигналу. Иногда говорят просто «импеданс», отбрасывая слово «электрический».

Основы электротехники

Представление об импедансе позволяет применять закон Ома к участкам цепей переменного синусоидального тока. Проявление двухполюсником (нагрузкой) индуктивной составляющей приводит к отставанию тока от напряжения на данной частоте, а проявление емкостной составляющей — к отставанию напряжения от тока. Активная же составляющая не вызывает задержки между током и напряжением, проявляя себя по сути так же, как и в цепи постоянного тока.

Выражение импеданса

Составляющая импеданса, содержащая емкостной и индуктивный компоненты, называется реактивной составляющей X. Графически активную составляющую R импеданса можно отложить по оси оX, а реактивную — по оси оY, тогда импеданс в целом представится в форме комплексного числа, где j-мнимая единица (мнимая единица в квадрате равна минус 1).

В данном случае наглядно видно, что реактивная составляющая X может быть разложена на емкостную и индуктивную составляющие, которые имеют противоположное направление, то есть оказывают противоположное влияние на фазу тока: при преобладании индуктивной составляющей, импеданс цепи окажется в целом положительным, то есть в цепи ток будет отставать от напряжения, если же станет преобладать емкостной компонент, то напряжение будет отставать от тока.

Схематически этот двухполюсник в приведенном виде изображается так:

Принципиально любая схема линейного двухполюсника может быть приведена к аналогичному виду. Здесь можно определить активную составляющую R, которая от частоты тока не зависит, и реактивную составляющую X, включающую в себя емкостную и индуктивную составляющие.

Из графической модели, где сопротивления представлены векторами, ясно, что модуль импеданса для заданной частоты синусоидального тока вычисляется как длина вектора, представляющего собой сумму векторов X и R. Измеряется импеданс в Омах.

Альтернативные термины

Практически в описаниях цепей синусоидального переменного тока с точки зрения импеданса, можно встретить такие термины, как «активно-индуктивный характер нагрузки» или «активно-емкостная нагрузка» или «чисто активная нагрузка». Имеется ввиду следующее:

  • Если в цепи преобладает влияние индуктивности L, значит реактивная составляющая X положительна, при этом активная составляющая R мала — это индуктивная нагрузка. Пример индуктивной нагрузки — катушка индуктивности.
  • Если в цепи преобладает влияние емкости C, значит реактивная составляющая X отрицательна, при этом активная составляющая R мала — это емкостная нагрузка. Пример емкостной нагрузки — конденсатор.
  • Если в цепи преобладает активное сопротивление R, при этом реактивная составляющая X мала — это активная нагрузка. Пример активной нагрузки — лампа накаливания.
  • Если в цепи активная составляющая R значительна, но индуктивная составляющая преобладает над емкостной, то есть реактивная составляющая X положительна, нагрузку называют активно-индуктивной. Пример активно-индуктивной нагрузки — асинхронный двигатель.
  • Если в цепи активная R составляющая значительна, при этом емкостная составляющая преобладает над индуктивной, то есть реактивная составляющая X отрицательна, нагрузку называют активно-емкостной. Пример активно-емкостной нагрузки — блок питания люминесцентной лампы.

Импеданс в электроснабжении

С импедансом также можно столкнуться при оценке безопасности низковольтных электроустановок (например, при ревизиях). Величина импеданса сети TN определяет безопасность установки, определяя скорость срабатывания вышестоящего аппарата защиты (предохранителя, автоматического выключателя и т. д.). Чтобы автоматический выключатель отключился в случае неисправности за достаточно короткое время, импеданс должен быть достаточно низким.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Что такое комплексное сопротивление или импеданс

Электрический импеданс — это термин, относящийся к цепям переменного тока. Слово происходит от латинского impedіо (сопротивляться). Расчёт комплексного сопротивления или импеданса представляет собой важный этап разработки различных электрических и электронных устройств.

Электронные устройства, требующие определения импеданса

Электронные устройства, требующие определения импеданса

Что такое импеданс и его составляющие

Импеданс электрических цепей — это векторная (двумерная) величина, состоящая из двух независимых скалярных (одномерных) компонентов: активного и реактивного сопротивления. Он обозначается буквой Z и выражает противодействие, которое электронный элемент, схема или система оказывает переменному электротоку. Измеряется в омах.

Виды сопротивлений в электроцепи

Виды сопротивлений в электроцепи

Активное сопротивление (R) является мерой интенсивности противодействия движению электронов между атомами. Чем легче атомы отдают/принимают электроны, тем ниже этот параметр, выражающийся в положительных действительных числах. Реактивное сопротивление, обозначаемое буквой Х, представляет собой выражение степени, с которой электронный компонент, схема или система накапливает или высвобождает энергию при колебаниях тока и напряжения за каждый единичный цикл переменного тока. Импедансом часто называют модуль комплексного сопротивления, поэтому реактивное сопротивление выражается в так называемых «мнимых» омах. Оно характерно только для линий переменного тока.

Когда переменный электроток проходит через катушку индуктивности, накапливаемая энергия высвобождается в виде магнитного поля. В этом случае реактивная составляющая импеданса является индуктивной (обозначается +jXL). Чем быстрее меняется направление тока, тем ХL больше.

Однако энергия может запасаться и высвобождаться в виде электрического поля, тогда данный параметр будет емкостным (обозначается –jXC ). Когда ток меняет направление, конденсатор многократно заряжается и разряжается. Чем больше времени конденсатор заряжается, тем сильнее он противодействует электротоку. Поэтому чем быстрее меняется направление электротока, тем ниже емкостное сопротивление.

Реактивное сопротивление обычно умножается на положительный квадратный корень из –1, который представляет собой единичное мнимое число j. Тогда комплексное сопротивление Z выражается как R + jXL или R – jXC. Следовательно, активное сопротивление R — это действительная часть комплексного импеданса, а реактивное Х — мнимая.

Графическая интерпретация составляющих импеданса

Графическая интерпретация составляющих импеданса

Левая половина координатной плоскости, представленной на рисунке выше, обычно не используется, поскольку на практике отрицательные сопротивления не встречаются. Индуктивное сопротивление указывается на положительной части линии мнимой оси, а ёмкостное — на отрицательной части линии.

Комплексное электрическое сопротивление фаз может быть определено как отношение электронапряжения к амплитуде электротока, что идентично закону Ома. Фаза импеданса является фазовым сдвигом, соответствующим отставанию электротока от электронапряжения.

Последовательность расчета компонентов импеданса

Найти импеданс или полное сопротивление последовательной цепи довольно просто, если в ней присутствует только какой-то один вид элементов. Импеданс идеального резистора соответствует его активному сопротивлению R, которое называется еще резистивным. Импеданс для катушки индуктивности — это мнимое реактивное сопротивление XL, а для конденсатора —ХС.

Если имеется активное сопротивление и один тип реактивного, тогда вычисления выполняются по формуле:

Формула импеданса при наличии активного и одного вида реактивного сопротивления

Формула импеданса при наличии активного и одного вида реактивного сопротивления

При наличии всех составляющих полное сопротивление или импеданс находим с помощью такого выражения:

Формула импеданса при наличии всех видов сопротивления в электроцепи

Формула импеданса при наличии всех видов сопротивления в электроцепи

Таким образом, комплексное входное сопротивление цепи выражается как R + jX, где j — мнимое число √(–1).

Векторная диаграмма импеданса

Векторная диаграмма импеданса

Для расчетов всех составляющих импеданса используются формулы:

Формулы для расчета составляющих импеданса

Формулы для расчета составляющих импеданса

Комплексное сопротивление и проводимости участков характеризуют замедление тока, которое связано с влиянием материала и формой резистора. Реактивное сопротивление X — это замедление тока из-за электрических и магнитных полей, противодействующих изменениям тока или напряжения. Этот параметр важен для конденсаторов и катушек индуктивности.

Импеданс в цепи переменного электротока

Импеданс в цепи переменного электротока

Определение импеданса

Рассчитать импеданс проще всего, если в цепи есть n резисторов, но нет катушек индуктивности или конденсаторов. Сначала измеряется сопротивление на каждом резисторе (или любом аналогичном компоненте). Найденные значения суммируются, если элементы соединены последовательно: R = R1 + R2 + … + Rn.

Результирующая величина для n резисторов, включённых параллельно, определяется следующим образом: 1/R = 1/R1 + 1/R2 + … + 1/Rn.

Если в цепи есть только индуктивная нагрузка или емкостная, импеданс будет соответствовать реактивному сопротивлению:

  • Для последовательно соединенных катушек индуктивности X = XL1+ XL2 + …
  • Для последовательно соединенных конденсаторов C =XC1 + XC2 + …
  • Для катушек индуктивности, соединенных параллельно X = 1/(1/XL1+ 1/XL2 …)
  • Для конденсаторов, соединенных параллельно: C = 1/(1/XC1+ 1/XC2 …)

С ростом частоты электротока сопротивление индуктивностей увеличивается, а конденсаторов уменьшается. Поэтому при их совместном использовании в электрической линии они уравновешивают друг друга. Чтобы найти общее реактивное сопротивление, надо вычесть одно значение из другого: X = |XC – XL|.

Величину импеданса можно вычислить для любой электроцепи переменного тока, состоящей из таких линейных пассивных элементов, как резисторы, индуктивности и конденсаторы. Для электроцепи с постоянным током не существует различия между импедансом и сопротивлением. Последний параметр можно рассматривать как импеданс, фазовый угол которого равняется нулю.

Полное сопротивление цепи переменного тока

В предыдущих статьях мы узнали, что всякое сопротивление, поглощающее энергию, называется активным, а сопротивление, не поглощающее энергии, безваттным или реактивным. Кроме того, мы установили, что реактивные сопротивления делятся на два вида — индуктивные и емкостные.

Однако существуют цепи, где сопротивление не является чисто активным или чисто реактивным. То есть цепи, где вместе с активным сопротивлением включены в цепь, как емкости, так и индуктивности.

Введем понятие полного сопротивления цепи переменному току — Z, которое соответствует векторной сумме всех сопротивлений цепи (активных, емкостных и индуктивных). Понятие полного сопротивления цепи нам необходимо для более полного понимания закона Ома для переменного тока

На рисунке 1 представлены варианты электрических цепей и их классификация в зависимости от того какие элементы (активные или реактивные) включены в цепь.

cepi-peremennogo-toka

Рисунок 1. Классификация цепей переменного тока.

Полное сопротивление цепи с чисто активными элементами соответствует сумме активных сопротивлений цепи и рассматривалось нами ранее. О чисто емкостном и индуктивном сопротивлении цепи мы тоже с вами говорили, и оно зависит соответственно от общей емкости и индуктивности цепи.

Рассмотрим более сложные варианты цепи, где последовательно с активным сопротивлением в цепь включено индуктивное и реактивное сопротивление.

Полное сопротивление цепи при последовательном соединении активного и реактивного сопротивления.

В любом сечении цепи, изображенной на рисунке 2,а, мгновенные значения тока должны быть одинаковыми, так как в противном случае наблюдались бы скопления и разрежения электронов в каких-либо точках цепи. Иными словами, фазы тока по всей длине цепи должны быть одинаковыми. Кроме того, мы знаем, что фаза напряжения на индуктивном сопротивлении опережает фазу тока на 90°, а фаза напряжения на активном сопротивлении совпадает с фазой тока (рисунок 2,б). Отсюда следует, что радиус-вектор напряжения UL (напряжение на индуктивном сопротивлении) и напряжения UR (напряжение на активном сопротивлении) сдвинуты друг относительно друга на угол в 90°.

polnoe-soprotivlenie-posledovat-rl

Рисунок 2. Полное сопротивление цепи с активным сопротивлением и индуктивностью. а) — схема цепи; б) — сдвиг фаз тока и напряжения; в) — треугольник напряжений; д) — треугольник сопротивлений.

Для получения радиуса-вектора результирующего напряжения на зажимах А и В (рис.2,а) мы произведем геометрическое сложение радиусов-векторов UL и UR. Такое сложение выполнено на рис. 2,в, из которого видно, что результирующий вектор UAB является гипотенузой прямоугольного треугольника.

Из геометрии известно, что квадрат гипотенузы равен сумме квадратов катетов.

polnoe-soprotivlenie-formula-1

По закону Ома напряжение должно равняться силе тока, умноженной на сопротивление.

Так как сила тока во всех точках цепи одинакова, то квадрат полного сопротивления цепи (Z 2 ) будет также равен сумме квадратов активного и индуктивного сопротивлений, т. е.

polnoe-soprotivlenie-formula-2

(1)

Извлекая квадратный корень из обеих частей этого равенства, получим,

polnoe-soprotivlenie-formula-3

(2)

Таким образом, полное сопротивление цепи, изображенной на рис 2,а, равно корню квадратному из суммы квадратов активного и индуктивного сопротивлений

Полное сопротивление можно находить не только путем вычисления, но и путем построения треугольника сопротивлений, аналогичного треугольнику напряжений (рис 2,д), т. е. полное сопротивление цепи переменному току может быть получено путем измерения гипотенузы, прямоугольного треугольника, катетами которого являются активное и реактивное сопротивления. Разумеется, измерения катетов и гипотенузы должны производиться в одном и том же масштабе. Так, например, если мы условились, что 1 см длины катетов соответствует 1 ом, то число омов полного сопротивления будет равно числу сантиметров, укладывающихся на гипотенузе.

Полное сопротивление цепи, изображенной на рис.2,а, не является ни чисто активным, ни чисто реактивным; оно содержит в себе оба эти вида сопротивлений. Поэтому угол сдвига фаз тока и напряжения в этой цепи будет отличаться и от 0° и от 90°, то есть он будет больше 0°, но меньше 90°. К которому из этих двух значений он будет более близок, будет зависеть от того, какое из этих сопротивлений имеет преобладающее значение в цепи. Если индуктивное сопротивление будет больше активного, то угол сдвига фаз будет более близок к 90°, и наоборот, если преобладающим будет активное сопротивление, то угол сдвига фаз будет более близок к 0°.

В цепи, изображенной на рис 3,а, соединены последовательно активное и емкостное сопротивления. Полное сопротивление такой цепи можно определить при помощи треугольника сопротивлений так же, как мы определяли выше полное сопротивление активно-индуктивной цепи.

polnoe-soprotivlenie-posledovat-rc

Рисунок 3. Полное сопротивление цепи с активным сопротивлением и емкостью. а) — схема цепи; б) — треугольник сопротивлений .

Разница между обоими случаями состоит лишь в том, что треугольник сопротивлений для активно-емкостной цепи будет повернут в другую сторону (рис 3,б) вследствие того, что ток в емкостной цепи не отстает от напряжения, а опережает его.

Для данного случая:

polnoe-soprotivlenie-formula-4

(3)

В общем случае, когда цепь содержит все три вида сопротивлений (рис. 4,а), сначала определяется реактивное сопротивление этой цепи, а затем уже полное сопротивление цепи.

polnoe-soprotivlenie-posledovat-rlc

Рисунок 4. Полное сопротивление цепи содержащей R, L и C. а) — схема цепи; б) — треугольник сопротивлений .

Реактивное сопротивление этой цепи состоит из индуктивного и емкостного сопротивлений. Так как эти два вида реактивного сопротивления противоположны друг другу по своему характеру, то общее реактивное сопротивление цепи будет равно их разности, т. е.

polnoe-soprotivlenie-formula-5

(4)

Общее реактивное сопротивление цепи может иметь индуктивный или емкостный характер, в зависимости от того, какое из этих двух сопротивлений (XL или XC преобладает).

После того как мы по формуле (4) определили общее реактивное сопротивление цепи, определение полного сопротивления не представит затруднений. Полное сопротивление будет равно корню квадратному из суммы квадратов активного и реактивного сопротивлений, т. е.

polnoe-soprotivlenie-formula-6

(5)

polnoe-soprotivlenie-formula-7

(6)

Способ построения треугольника сопротивлений для этого случая изображен на рис. 4 б.

Полное сопротивление цепи при параллельном соединении активного и реактивного сопротивления.

Полное сопротивление цепи при параллельном соединении активного и реактивного элемента.

Для того чтобы вычислить полное сопротивление цепи, составленной из активного и индуктивного сопротивлений, соединенных между собой параллельно(рис. 5,а), нужно сначала вычислить проводимость каждой из параллельных ветвей, потом определить полную проводимость всей цепи между точками А и В и затем вычислить полное сопротивление цепи между этими точками.

parallelnoe-soedinenie

Рисунок 5. Полное сопротивление цепи при параллельном соединении активного и реактивных элементов. а) — параллельное соединение R и L; б) — параллельное соединение R и C .

Проводимость активной ветви, как известно, равна 1/R, аналогично проводимость индуктивной ветви равна 1/ωL , а полная проводимость равна 1/Z

Полная проводимость равна корню квадратному из суммы квадратов активной и реактивной проводимости, т. е.

polnoe-soprotivlenie-formula-8

(7)

Приводя к общему знаменателю подкоренное выражение, получим:

polnoe-soprotivlenie-formula-9

(8)

polnoe-soprotivlenie-formula-10

(9)

Формула (9) служит для вычисления полного сопротивления цепи, изображенной на рис. 5а.

Нахождение полного сопротивления для этого случая может быть произведено и геометрическим путем. Для этого нужно построить в соответствующем масштабе треугольник сопротивлений, и затем произведение длин катетов разделить на длину гипотенузы. Полученный результат и будет соответствовать полному сопротивлению.

Аналогично случаю, рассмотренному выше, полное сопротивление при параллельном соединении R и С (рис 5б) будет равно:

polnoe-soprotivlenie-formula-11

(10)

Полное сопротивление может быть найдено также и в этом случае путем построения треугольника сопротивлений.

В радиотехнике наиболее часто встречается случай па¬раллельного соединения индуктивности и емкости, например колебательный контур для настройки приемников и передатчиков. Так как катушка индуктивности всегда обладает кроме индуктивного еще и активным сопротивлением, то эквивалентная (равноценная) схема колебательного контура будет содержать в индуктивной ветви активное сопротивление (рис 7).

kolebatelnyj-kontur

Рисунок 6. Эквивалентная схема колебательного контура.

Формула полного сопротивления для этого случая будет:

polnoe-soprotivlenie-formula-12

(11)

Так как обычно активное сопротивление катушки (R) бывает очень мало по сравнению с ее индуктивным сопротивлением (ωL), то мы имеем право формулу (11) переписать в следующем виде:

polnoe-soprotivlenie-formula-13

(12)

В колебательном контуре обычно подбирают величины L и С таким образом, чтобы индуктивное сопротивление равнялось емкостному, т. е. чтобы соблюдалось условие

polnoe-soprotivlenie-formula-14

(13)

При соблюдении этого условия полное сопротивление колебательного контура будет равно:

polnoe-soprotivlenie-formula-15

(14)

где L—индуктивность катушки в Гн;

С—емкость конденсатора в Ф;

R—активное сопротивление катушки в Ом.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Как вычислить общее сопротивление цепи

В создании этой статьи участвовала наша опытная команда редакторов и исследователей, которые проверили ее на точность и полноту.

Команда контент-менеджеров wikiHow тщательно следит за работой редакторов, чтобы гарантировать соответствие каждой статьи нашим высоким стандартам качества.

Количество источников, использованных в этой статье: 8. Вы найдете их список внизу страницы.

Количество просмотров этой статьи: 437 290.

В этой статье:

Элементы электрической цепи можно соединить двумя способами. Последовательное соединение подразумевает подключение элементов друг к другу, а при параллельном соединении элементы являются частью параллельных ветвей. Способ соединения резисторов определяет метод вычисления общего сопротивления цепи.

Метод 1 из 4:

Последовательное соединение

Step 1 Определите, является ли цепь последовательной.

Определите, является ли цепь последовательной. Последовательное соединение представляет собой единую цепь без каких-либо разветвлений. Резисторы или другие элементы расположены друг за другом.

Step 2 Сложите сопротивления отдельных элементов.

  • Например, последовательная цепь состоит из трех резисторов с сопротивлениями 2 Ом, 5 Ом и 7 Ом. Общее сопротивление цепи: 2 + 5 + 7 = 14 Ом.

Step 3 Вычислите сопротивление по известной силе тока и напряжению.

  • Сила тока в любых частях последовательной цепи одна и та же. [2] X Источник информации Поэтому можно использовать известное значение силы тока на любом участке последовательной цепи.
  • Общее напряжение равно напряжению источника тока. Оно не равно напряжению на каком-либо элементе цепи. [3] X Источник информации

Step 4 Подставьте известные значения в формулу, описывающую закон Ома.

  • Например, напряжение источника тока равно 12 В, а сила тока равна 8 А. Общее сопротивление последовательной цепи: RO = 12 В / 8 А = 1,5 Ом.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *