Где применяются электромагнитные волны
Перейти к содержимому

Где применяются электромагнитные волны

  • автор:

Использование механических и электромагнитных волн на практике

Что такое волны?
Волна́ — изменение некоторой совокупности физических
величин (характеристик некоторого физического поля или
материальной среды), которое способно перемещаться,
удаляясь от места его возникновения, или колебаться внутри
ограниченных областей пространства.

3.

Какие бывают
волны?
Волны бывают механические и электромагнитные.
Механические волны распространяются в твердой,
жидкой и газообразной среде.
Электромагнитные волны распространяются только в
вакууме.

4.

Механические волны
Механические волны — это процесс
распространения в пространстве колебаний
частиц упругой среды (твердой, жидкой или
газообразной)

5.

В медицине:
· Аускультация (выслушивание). Для неё используют
стетоскоп или фонендоскоп, которые выслушивают звуки,
идущие от внутренних органов. За счет явления
резонанса капсула усиливает звучание внутренних
органов. Позволяет различать хрипы легких,
сердцебиение плода, шумы в сердце.
Где применяются?
· Фонокардиография — метод для диагностики состояния
сердечной деятельности, заключается в графической
записи тонов и шумов.
· Перкуссия — выслушивание звучания отдельных частей
тела при их простукивании. Метод основан на резонансе
звука при его прохождении через различные полости
тела и поглощении другими внутренними органами.

6.

Электромагнитные
волны
Электромагни́тные во́лны — распространяющееся в
пространстве возмущение (изменение состояния)
электромагнитного поля.

7.

Электромагнитные волны и их применение:
· Телевидение
Применение
электромагнитных
волн
· Радио
· Мобильная связь
· Спутниковая радиосвязь
· Навигация
· Локаторы
· Мониторы ПК, телевизоры и др.

Рефераты по ФОЗИ / электромагнитные волны (билет 10)

Электромагнитная волна представляет собой процесс распространения в пространстве изменяющихся электрического и магнитного полей.

Существование электромагнитных волн было теоретически предсказано Максвеллом. Экспериментально электромагнитные волны были открыты и изучены Герцем.

Основными свойствами электромагнитных волн являются:

  1. поглощение;
  2. рассеяние;
  3. преломление;
  4. отражение;
  5. интерференция;
  6. дифракция;
  7. поляризация;

Электромагнитные волны и их характеристика. Электромагнитная волна представляет собой процесс распространения в пространстве изменяющихся электрического и магнитного полей. Существование электромагнитных волн было предсказано английским физиком Майклом Фарадеем. В 1831 году Фарадей открыл явление электромагнитной индукции — возбуждение электрического тока в замкнутом проводящем контуре, находящемся в переменном магнитном поле. Он является основоложником учения об электромагнитных явлениях, в котором электрические и магнитные явления рассматриваются с единой точки зрения. С помощью многочисленных опытов Фарадей доказал, что действие электрических зарядов и токов не зависит от способа их получения. Взаимопревращения электрического и магнитного полей  Согласно теории Максвелла, в каждой точке пространства изменение электрического поля создает переменное вихревое магнитное поле, вектора В магнитной индукции которого лежат в плоскости, перпендикулярной к вектору Е напряженности электрического поля. Механическое уравнение, выражающее эту закономерность, называется первым уравнением Максвелла. Изменение во времени индукции магнитного поля создает переменное вихревое электрическое поле, векторы Е напряженности которого лежат в плоскости, перпендикулярной к вектору В. Математическое уравнение, описывающее эту закономерность, называется вторым уравнением Максвелла. Из уравнения Максвелла следует, что возникшее в какой-либо точке изменение во времени магнитного (или электрического) поля будет перемещаться от одноц точки к другой, при этом будут происходить взаимные превращения этих полей, т.е. будет происходить распространение электромагнитных взаимодействий в пространстве. В 1865 году Дж. Максвелл теоретически доказал, что электромагнитные колебания распространяются в вакууме с конечной скоростью, равной скорости света: с = 3 * 10^8 м/с. В 1888 году электромагнитные волны были впервые экспериментально обнаружены немецким физиком Генрихом Герцем (1857-1894), что сыграло решающую роль для утверждения максвелловской теории электромагнитных волн. Таким образом, электромагнитные волны — это электромагнитные колебания, распространяющиеся в пространстве с конечной скоростью. Длина электромагнитной волны — расстояние между двумя ближайшими точками, в которых колебания происходят в одинаковых фазах. где — длина волны; с — скорость света в вакууме; Т — период колебаний; v — частота колебаний. Скорость света в вакууме с= 3 * 10^8 м/с. При распространении электромагнитных волн в какой-либо другой среде скорость волны изменяется и длина волны , где u — скорость волны в среде. В атмосфере скорость практически можно принять равной скорости света в вакууме. Скорость u электромагнитной волны в среде определяется из формулы Максвелла: где е — относительная диэлектрическая проницаемость среды, — относительная магнитная проницаемость среды. Скорость распространения электромагнитных волн в данной среде совпадает со скоростью света в этой среде, что является одним из обоснований электромагнитной природы света. Основная характеристика электромагнитных волн — это частота их колебаний v (или период Т). Длина волны л меняется при переходе из одной среды в другую, в то время как частота остается неизменной. Электромагнитные волны являются поперечными волнами. Распространение электромагнитных волн связано с переносом энергии электромагнитного поля волны, которая переносится в направлении распространения волны, т.е. в направлении вектора v. Наряду с энергией электромагнитная волна обладает импульсом. Если волна поглощается, то ее импульс передается тому объекту, который ее поглощает.  Отсюда следует, что при поглощении электромагнитная волна оказывает давление на преграду. Плотностью потока электромагнитного излучения I (интенсивностью электромагнитной волны) называют отношение электромагнитной энергии W, проходящей за время t через перпендикулярную лучам поверхность площадью S, к произведению площади S на время t: где W — электромагнитная энергия, прошедшая за время t через поверхность площадью S. Единицей измерения интенсивности электромагнитного излучения I является ватт на м [вт/м ]. Плотность потока излучения (интенсивность электромагнитной волны) равна произведению плотности электромагнитной энергии на скорость её распространения: где — магнитная постоянная в СИ. Интенсивность электромагнитной волны пропорциональна среднему значению произведения модулей векторов Е и В электромагнитного поля, т.е. пропорциональны квадрату напряженности Е:

Использование электромагнитных волн различного диапазона в технических средствах связи, медицине, при изучении свойств вещества.

Бурное развитие отраслей народного хозяйства привело к использованию во всех промышленных производствах, в медицине и в быту электромагнитных волн.

Сегодня открыты электромагнитные волны всех без исключения диапазонов, и практически все они находят широкое и полезное применение в науке и технике. Частоты волн и энергии соответствующих им квантов электромагнитного излучения возрастают с уменьшением длины волны. Совокупность всех электромагнитных волн образует так называемый сплошной спектр электромагнитного излучения. Он подразделяется на следующие диапазоны (в порядке увеличения частоты и уменьшения длины волн):

Шкала электромагнитных волн

1. Радиоволны — могут значительно различаться по длине — от нескольких сантиметров до сотен и даже тысяч километров, что сопоставимо с радиусом Земного шара (около 6400 км).

Волны всех радиодиапазонов широко используются в технике — дециметровые и ультракороткие метровые волны применяются для телевещания и радиовещания в диапазоне ультракоротких волн с частотной модуляцией (УКВ/FM), обеспечивая высокое качество приема сигнала в пределах зоны прямого распространения волн.

Радиоволны метрового и километрового диапазона применяются для радиовещания и радиосвязи на больших расстояниях с использованием амплитудной модуляции (АМ), которая, хотя и в ущерб качеству сигнала, обеспечивает его передачу на сколь угодно большие расстояния в пределах Земли благодаря отражению волн от ионосферы планеты. Впрочем, сегодня этот вид связи отходит в прошлое благодаря развитию спутниковой связи.

Волны дециметрового диапазона не могут огибать земной горизонт подобно метровым волнам, что ограничивает зону приема областью прямого распространения, которая, в зависимости от высоты антенны и мощности передатчика, составляет от нескольких до нескольких десятков километров. И тут на помощь приходят спутниковые ретрансляторы, берущие на себя ту роль отражателей радиоволн, которую в отношении метровых волн играет ионосфера.

2. Микроволны

Микроволны и радиоволны диапазона сверхвысоких частот (СВЧ) имеют длину от 300 мм до 1 мм. Сантиметровые волны, подобно дециметровым и метровым радиоволнам, практически не поглощаются атмосферой и поэтому широко используются в спутниковой и сотовой связи и других телекоммуникационных системах. Размер типовой спутниковой тарелки как раз равен нескольким длинам таких волн.

Более короткие СВЧ-волны также находят множество применений в промышленности и в быту. Достаточно упомянуть про микроволновые печи, которыми сегодня оснащены и промышленные хлебопекарни, и домашние кухни. Действие микроволновой печи основано на быстром вращении электронов в устройстве, которое называется клистрон. В результате электроны излучают электромагнитные СВЧ-волны определенной частоты, при которой они легко поглощаются молекулами воды. Когда вы помещаете еду в микроволновую печь, молекулы воды, содержащиеся в еде, поглощают энергию микроволн, движутся быстрее и таким образом разогревают еду. Иными словами, в отличие от обычной духовки или печи, где еда разогревается снаружи, микроволновая печь разогревает ее изнутри.

Виды электромагнитных волн

Источником электромагнитных волн может служить любой электрический колебательный контур или проводник с текущим по нему переменным током, поскольку для возбуждения электромагнитных волн следует генерировать в пространстве переменное электрическое или магнитное поле.

Следует отметить, что излучающая способность источника определена его формой, размерами и частотой колебаний. Для увеличения роли излучения необходимо увеличивать объем пространственной локализации поля. Это приводит к выводу о том, что для того, чтобы получить электромагнитные волны закрытые колебательные контуры не годятся.

Открытый контур Герца

Первый открытый колебательный контур создал Герц. Он представлял собой два стержня, которые разделял искровой промежуток. В такой конструкции переменное электрическое поле заполняет все окружающее контур пространство, что значительно увеличивает интенсивность электромагнитного излучения.

Статья: Виды электромагнитных волн

Найди решение своей задачи среди 1 000 000 ответов

Колебания в открытом контуре Герца поддерживает источник ЭДС, подключенный к обкладкам конденсатора. Искровой промежуток необходим для увеличения разности потенциалов первоначального заряда обкладок.

Электромагнитные колебания в вибраторе Герца возбуждаются при помощи индуктора (рис.1). При достижении напряжением на искровом промежутке пробивного значения, появлялась искра, которая закорачивала обе половинки вибратора. В вибраторе при этом, появляются свободные затухающие колебания. Когда искра исчезала, контур размыкался и колебания завершались. Для повторения процесса необходимо было зарядить индуктор. Для регистрации электромагнитных волн Герц применял второй вибратор.

Рисунок 1. Электромагнитные колебания в вибраторе Герца возбуждаются при помощи индуктора. Автор24 — интернет-биржа студенческих работ

Начинай год правильно ��
Выигрывай призы на сумму 400 000 ₽

Шкала электромагнитных волн

Теория Максвелла показывает, что разные электромагнитные волны имеют общую природу. В этой связи все известные электромагнитные волны часто представляют в виде единой шкалы.

Деление всех электромагнитных волн в зависимости от частоты и длины волны в вакууме стало традиционным. Шкала электромагнитных волн условно делится на шесть диапазонов, это:

  • радиоволны, которые бывают длинными, средними и короткими;
  • инфракрасные волны;
  • видимый свет;
  • ультрафиолетовые волны;
  • рентгеновские лучи;
  • $γ$ — излучение.

Радиоволны вызываются переменными токами, которые текут в проводниках или контурах и потоками электронов (это макроизлучатели).

Инфракрасное излучение, видимый свет, ультрафиолетовое излучение порождают атомы, молекулы и заряженные частицы, перемещающиеся с большой скоростью (это микроизлучатели).

Основными источниками радиоволн на нашей планете стали разнообразные явления в области электричества, которые идут в атмосфере, солнечное излучение, радиовещатели и телестанции, системы связи и радиолокаторы.

Рентгеновское излучение порождают процессы, проходящие внутри атомов. Например, рентгеновские лучи появляются при торможении изначально ускоренных электронов, если они попадают в вещество и переходах электронов в тяжелых атомах с внешних на внутренние орбиты.

Гамма излучение имеет ядерное происхождение. Такие лучи появляются в случае перехода ядер атомов из состояний возбуждения в невозбужденные.

Некоторые диапазоны могут перекрываться, поскольку волны равных длин способны возникать в различных процессах. Например, самые короткие волны ультрафиолетового диапазона перекрываются рентгеновскими лучами с самыми длинными волнами.

В данном отношении знаменательна пограничная область инфракрасных волн и радиоволн. Вплоть до 1922 года между данными диапазонами имелся пробел. Излучение с самой короткой длиной волны рассматриваемого промежутка было молекулярного происхождения (это излучение тела с повышенной температурой), а излучение с самой длинной волной создавали макроскопические вибраторы Герца.

Замечание 1

В настоящее время волны с длинами около миллиметра могут быть получены не только при помощи радиотехнических приборов, но и наблюдаться в молекулярных переходах.

Применение электромагнитных волн

Радиоволны применяются в самых разных областях жизни человека.

  1. Радиоволны используют для реализации беспроводной связи.
  2. Для нахождения точных расстояний используют электромагнитные волны.
  3. Астрономы применяют данные волны для исследования небесных тел.
  4. Электроагнитные излучения всех видов всех видов применяют в медицине.

Применение электромагнитных волн в медицине:

  • Гамма излучение применяют в диагностике части заболеваний и терапии.
  • Рентгеновские лучи ослабляются разными тканями организма по-разному, что позволяет получать рентгеновские изображения внутренних органов.
  • Видимые, инфракрасные и ультрафиолетовые лучи порождают фотобиологические процессы в разных системах. Видимый свет необходим для фотосинтеза у растений.
  • Тепловые эффекты, которые вызывает инфракрасное излучение используют для лечения некоторых заболеваний тканей поверхностей.
  • Инфракрасные лучи активизируют метаболизм.
  • Ультрафиолетовые лучи с длиной волны 315≤λ≤380 нм участвуют в процессе образования витамина D у человека.
  • Короткие ультрафиолетовые лучи 200≤λ≤280 нм являются бактерицидными.
  • Нагрев тканей при помощи радиоволн применяют в физиотерапии. В этом случае применяют аппараты ультравысокой частоты и индуктотермии.

При УВЧ – терапии на избранную часть тела помещают два плоских электрода (они не касаются тела). Под воздействием электромагнитной волны в тканях появляются токи проводимости и по закону Джоуля — Ленца выделяется некоторой количество теплоты ($Q$):

  • $ E_$ — эффективная величина напряженности электрического поля;
  • $ρ$ – удельное сопротивление ткани тела;
  • $V$ — объем тела, которое подвергается прогреву;
  • $k$ — коэффициент пропорциональности;
  • $\Delta<>t$ – время процедуры.

В индуктотермии для действия на организм применяют переменное магнитное поле большой частоты. В этом случае в проводящих ток тканях появляются вихревые токи, и их энергия переходит в тепловую. Количество теплоты, которое выделяется равно:

где $\omega<>$ – циклическая частота изменения поля.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *