14.2. Электронные генераторы
Электронным генератором называют устройство, создающее электрические колебания определенной частоты и формы и использующее для этого энергию источника постоянного тока (напряжения).
По принципу действия генераторы бывают с внешним 1 и внутренним возбуждением. Генераторы с внутренним возбуждением (автогенераторы) возбуждаются самостоятельно (без внешнего источника). Основными характеристиками генераторов являются форма, частота и амплитуда создаваемых колебаний.
По форме колебаний генераторы подразделяются на генераторы синусоидальных колебаний и генераторы несинусоидальных (релаксационных) колебаний.
По частоте колебаний генераторы подразделяются на низкочастотные (от долей герц до 100 кГц), высокочастотные (100 кГц … 10 мГц) и сверхвысокочастотные (более 10 мГц).
Важными характеристиками являются мощность выходного сигнала, стабильность частоты и коэффициент полезного действия.
14.2.1. Генераторы синусоидальных колебаний
Любой генератор состоит из усилителя и цепи положительной обратной связи. Структурная схема генератора представлена на рис. 14.12.
За счет влияния цепи обратной связи на делитель на его выходе появляется напряжение даже при отсутствии напряжения на входе, т.е. происходит самовозбуждение делителя и превращение его в генератор.
Чтобы на выходе генератора получить периодические колебания заданной частоты, в цепь его обратной связи необходимо включить колебательный контур, настроенный на данную частоту. В зависимости от состава элементов контура автогенераторы бывают LC и RC-типов (рис. 14.13).
Схема LC -генератора (рис.14.13 а) объединяет однокаскадный делитель на транзисторе VT и колебательный контур LC, включенный в цепь положительной обратной связи генератора. Подбором L и C устанавливают требуемую частоту колебаний .
После включения источника питания в контуреLC возникают колебания и переменный ток базы усиливается транзистором. Протекающий через катушку ток коллекторасоздает на ней падение напряжения, которое в противофазе (вследствие встречного включения катушеки) за счет индуктивной связи между катушками подается в колебательный контур. Амплитуда колебаний постепенно возрастает до определенного значения (насыщения транзистора) и в дальнейшем не изменяется.
Недостатком рассмотренной схемы генератора является большое влияние температуры на амплитуду и частоту вырабатываемых напряжений. Поэтому часто эти схемы дополняют элементами, стабилизирующими параметры генерируемых напряжений.
Для получения периодических напряжений низкой частоты (от долей герца до нескольких килогерц) целесообразно в генераторе вместо LC контура использовать RC-цепь (рис. 14.13 б).
Эта замена упрощает конструкцию и снижает массу генератора. В отличие от LC-генератора в этой схеме положительная обратная связь образована частотно-зависимой RC-цепью. Если выходное напряжение генератора, снимаемое с коллектора транзистора, подать непосредственно на вход усилителя (на базу транзистора), то создается отрицательная обратная связь.
Чтобы получить одинаковые фазы выходного и входного напряжений, необходимо напряжение на RC-цепи сдвинуть на 180°. Это осуществляют тремя RC-элементами, каждый из которых позволяет получить фазовый сдвиг на 60°. Несмотря на усложнение схемы генератора, она проста в реализации, особенно для низких частот, так как не требует индуктивных катушек, имеющих большие габариты и массу.
7. Электронные генераторы
Генераторами называются автоколебательные системы, в которых энергия источника постоянного тока преобразуется энергию незатухающих электрических сигналов переменного тока, частоты и мощности.
В зависимости от формы колебаний различают автогенераторы синусоидальных и импульсных (релаксационных) колебаний.
Автогенераторы (генераторы с самовозбуждением) используются в качестве возбудителей колебаний требуемых частот, т. е. задающих генераторов. Получаемые от них колебания поступают затем в последующие каскады с целью усиления или умножения частоты. Они находят широкое применение в радиопередающих и радиоприемных устройствах, в ЭВМ, в измерительной технике, в автоматике и телемеханике и т. д. Любой усилитель может быть превращен в автогенератор, если его охватить положительной обратной связью и обеспечить выполнение условия , где - коэффициент передачи цепи обратной связи.
Высокочастотные автогенераторы, работающие в диапазоне частот от 100 кГц до 100 МГц, выполненные на основе схемы резонансного усилителя, часто называются генераторами LC — типа. Низкочастотные автогенераторы, работающие в диапазоне от 0,01Гц до 100 кГц, построенные на основе схемы усилителя на резисторах, называются генераторами RC — типа.
Колебательный контур
В электронной аппаратуре часто появляется необходимость использования колебательных контуров.
Колебательным контуром называется замкнутая электрическая цепь, состоящая из индуктивности L и емкости С. Контур является идеальным, если в нем отсутствуют потери энергии, но во всяком реальном контуре кроме индуктивности и емкости имеется активное сопротивление , которое распределено в катушке индуктивности и частично в соединительных проводах и диэлектрике конденсатора. Активное сопротивления вызывает потери энергии в контуре.
Свободными колебаниями в контуре называют колебания, возникающие в нем за счет энергии, первоначально накопленной в электрическом поле конденсатора либо в магнитном поле катушки. В идеальном контуре свободные колебания являются незатухающими, т, е. могут продолжаться бесконечно долгое время.
К олебательный контур, близкий по своим свойствам к идеальному, можно получить, замкнув в контуре, изображенном на рис. 22а, ключ К. Если переключатель S поставить в положение 1, конденсатор С зарядится от источника питания напряжения Е0. При переводе переключателя в положение 2 конденсатор С начнет разряжаться через катушку L. По мере разряда конденсатора возрастает и энергия переходит в энергию магнитного поля катушки. Когда конденсатор полное разряжается, напряжение на его обкладках исчезает. В это время ток в контуре максимальный. Так теперь отсутствует сила, поддерживающая ток, то он начинает уменьшаться. При этом увеличивается ЭДС самоиндукции обратной полярности и конденсат заряжается с новой полярностью. Роль источника в это время выполняет катушка. По мере заряда, конденсатора напряжение на его обкладках возрастает, а ток в контуре Рис. 22
убывает. После окончания зарядки конденсатор начинает разряжаться через катушку, и процесс повторяется. На рис. 22б показаны графики изменения напряжения и тока в идеальном контуре.
Угловая частота свободных колебаний контура зависит от его параметров:
Частное от деления напряжения на ток в контуре называется волновым сопротивлением контура:
Индуктивное сопротивление катушки и емкостное сопротивление конденсатора при свободных колебаниях равно волновому сопротивлению контура: . Частота свободных колебаний:
Длина волны, соответствующая частоте свободных колебаний, .
Если ключ К разомкнуть, то в контуре появятся активные потери. В этом случае колебания в контуре скажутся затухающими (рис. 22в). В течение каждого периода колебаний часть первоначально запасенной энергии будет безвозвратно теряться в активном сопротивлении контура. Чем больше активное сопротивление, тем быстрее уменьшаются амплитуды тока и напряжения.
Для оценки качества колебательного контура вводится понятие добротности контура — Q. Добротность равна отношению волнового сопротивления к активному сопротивлению контура R:
Величина, обратная добротности, называется затуханием контура:
Чем больше добротность, тем дольше существуют свободные колебания и тем выше качество контура.
Генераторы LC – типа.
Любой автогенератор LC — типа состоит из:
- колебательного контура, в котором возбуждаются незатухающие колебания требуемой частоты;
- источника электрической энергии, за счет которого в контуре поддерживаются незатухающие колебания;
- транзистора, посредством которого регулируется подача энергии, от источника в контур;
- элемента обратной связи, обеспечивающего передачу переменного напряжения необходимой величины из выходной цепи во входную, для поддержания незатухающих колебаний в колебательном контуре.
Простейшая схема автогенератора LC — типа на транзисторе приведена на рис. 23а.
Рис. 23. Автогенератор LC — типа (а) и пульсации тока коллектора (б)
Такая схема называется генератором с трансформаторной связью. Колебательный контур состоит из индуктивной катушки и конденсатора . Источником энергии является источник постоянного напряжения который отдает часть энергии в колебательный контур в моменты, когда в его внешней цепи, состоящей из колебательного контура и параллельно соединенного с ним транзистора, проходит ток. Регулятором служит транзистор, цепью обратной связи — катушка , индуктивно связанная с колебательным контуром.
При включении источника питания в коллекторной цепи транзистора возникает ток коллектора, который заряжает конденсатор колебательного контура. После заряда конденсатор разряжается на катушку . В результате в контуре возникают свободные колебания с частотой которые индуцируют в катушке связи переменное напряжение той же частоты, с которой происходят колебания в контуре. Это напряжение вызывает пульсацию тока коллектора (см. рис.23б). Переменная составляющая этого тока восполняет потери энергии в контуре, создавая в нем усиленное транзистором переменное напряжение. Повышение напряжения на контуре приводит к новому нарастанию напряжения на катушке обратной связи , которое вызовет нарастание амплитуды переменной составляющей коллекторного тока, и т.д. В установившемся режиме рост тока в контуре ограничивается сопротивлением потерь, а также затуханием, вносимым в контур за счет прохождения тока по обмотке обратной связи .
Элементы схемы , , , предназначены для обеспечения необходимого режима работы по постоянному току и его термостабилизации. Дроссель является препятствием для переменной составляющей коллекторного тока, а конденсатор для его постоянной составляющей.
Незатухающие колебания в контуре автогенератора установятся лишь при выполнении двух основных условий. Первое из этих условий называют условием баланса фаз, которое сводится к тому, что в схеме генератора должна быть установлена положительная обратная связь между выходной и входной цепями транзистора. В этом режиме обеспечивается восполнение потерь энергии в контуре. Практически фазовое условие удовлетворяется, если напряжения коллекторе и базе будут сдвинуты на , т.е. находится в противофазе. Это достигается соответствующим включением концов катушек и . При отсутствии самовозбуждения необходимо переключить концы катушки . Второе условие называют условием баланса амплитуд, которое состоит в том, что для возникновения автоколебательного режима необходима положительная обратная связь с выхода усилительного элемента на его вход, причем затухание в контуре должно компенсироваться.
Практически глубина положительной обратной связи должна быть такой, чтобы полностью восполнялись потери энергии в контуре.
Помимо рассмотренной выше схемы с трансформаторной связью широкое распространение получили трехточечные схемы с индуктивной автотрансформаторной (рис. 24а) и емкостной (рис. 24б) обратной связью (ОС).
Рис. 24. Трехточечные схемы с индуктивной автотрансформаторной (а)
и емкостной (б) обратной связью
В этих схемах колебательный контур подключен к электродам транзистора (по переменному току) тремя точками: эмиттер, коллектор, база. Элементы контура к электродам транзистора должны подключаться так, чтобы выполнялось фазовое условие самовозбуждения генератора. В автотрансформаторной схеме с индуктивной ОС (рис. 24а) напряжение ОС снимается с части витков контурной катушки, которые заключены между эмиттером и базой транзистора, и через конденсатор С1 подается на базу. Мгновенные значения напряжений па катушках и относительно средней точки противоположны (сдвинуты по фазе на 180°).
В результате в схеме устанавливается положительная ОС и обеспечивается баланс фаз.
Амплитудное условие самовозбуждения удовлетворяется подбором значения ОС (числа витков катушки связи).
В схеме с емкостной ОС (рис. 24б) резонансный колебательный контур образован конденсаторами С1, С2 и катушкой . Напряжение ОС снимается с конденсатора С2. Фазовое условие самовозбуждения в схеме удовлетворяется, поскольку полярности мгновенных значений напряжений на конденсаторах противоположны по знаку. Условия баланса амплитуд обеспечиваются выбором емкости конденсатора С2 (при ее увеличении ОС уменьшается).
Генераторы RC-типа.
Для решения ряда электротехнических задач требуются низкочастотные автогенераторы синусоидальных колебаний, работающие в диапазоне частот от долей герца до сотен килогерц. Генерация таких колебаний с помощью LC — генераторов связана с большими конструктивными трудностями. В LC — генераторах при уменьшении частоты генерации необходимо увеличивать индуктивность и емкость колебательного контура, так как . Увеличение емкости и индуктивности колебательного контура приводит к резкому возрастанию его габаритов и массы. Этого недостатка лишены автогенераторы RC – типа, в которых вместо колебательных контуров используются избирательные RC — фильтры. Структурная схема RС — генератора изображена на рис. 25а.
Р ис.25. Структурная схема RС – генератора (а) и схема генератора
RC – типа с трехзвенной фазовращающей цепочкой
В этой схеме используется обычный резистивный усилитель. Для самовозбуждения усилителя его необходимо охватить положительной обратной связью, т. е. на вход усилителя подавать часть выходного напряжения, превышающего входное или равное ему но величине и совпадающее с ним по фазе.
Для обеспечения необходимого фазового сдвига па частоте генерируемых колебаний применяют фазовращающие цепочки, которые имеют несколько RC — звеньев и служат для поворота фазы выходного напряжения усилителя на 180°. В связи с тем что одно RC — звено изменяет фазу на угол меньше 90°, минимальное число звеньев фазовращающей цепочки равно трем. Для того чтобы частота генерируемых колебаний зависела, главным образом, от параметров фазовращающей цепочки, а амплитуда колебаний оставалась бы стабильной в заданном диапазоне частот, усилитель должен обладать большим коэффициентом усиления по току, значительным входным сопротивлением и относительно малым выходным сопротивлением.
На рис. 25б изображена простейшая схема генератора RC -типа с трехзвенной фазовращающей цепочкой.
Работа автогенератора начинается с момента подачи на него напряжения . Делитель напряжений , обеспечивает открытие транзистора VT. При этом возникает импульс коллекторного тока, который содержит широкий спектр частот, обязательно включающий в себя и необходимую частоту генерации. Генерирование незатухающих колебаний требуемой частоты осуществляется за счет обеспечения фазовых и амплитудных условий самовозбуждения Обеспечение фазовых условий достигается с помощью подбора соотношений между резисторами конденсаторами. В результате получается фазовый сдвиг в 180° между напряжениями на коллекторе и базе. Для выполнения амплитудного условия коэффициент обратной связи должен быть равен:
где -коэффициент передачи тока транзистор включенного по схеме с ОЭ.
Электронные генераторы. Назначение. Классификация. Принцип действия
Генераторами называются электронные устройства, преобразующие энергию источника постоянного тока в энергию переменного тока (электромагнитных колебаний) различной формы требуемой частоты и мощности.
Электронные генераторы применяются в радиовещании, медицине, радиолокации, входят в состав аналого-цифровых преобразователей, микропроцессорных систем и т. д.
Классификация электронных генераторов:
1) по форме выходных сигналов:
— сигналов специальной формы.
2) по частоте генерируемых колебаний (условно):
3) по способу возбуждения:
— с независимым (внешним) возбуждением;
Принцип действия электрического генератора основан на взаимодействии проводника и магнитного поля, в котором он движется. Как всегда приводится классический пример с рамкой в магнитном поле. Когда рамка вращается, её пересекают линии магнитной индукции, при этом в рамке образовывается электродвижущая сила. Эта ЭДС заставляет ток течь по рамке и с помощью контактных колец попадать во внешнюю цепь. Примерно так устроен простейший электрический генератор.
Генератор пилообразного напряжения. Принцип работы.
Принцип работы релаксационного генератора основан на том, что конденсатор заряжается до определенного напряжения через резистор. При достижении нужного напряжения открывается управляющий элемент. Конденсатор разряжается через другой резистор до напряжения, при котором управляющий элемент закрывается. Так напряжение на конденсаторе нарастает по экспоненциальному закону, затем убывает по экспоненциальному закону.
Виды защит электронных устройств.
Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:
Это важно знать:
Понятие и виды преступлений Теоретические основы уголовного права План лекции: 1. Общая характеристика отрасли уголовного права: понятие.
Задание: решите кроссворд По вертикали: 1. Наука о строе языка, о его законах. 4. Один из ведущих приемов обучения грамматическим навыкам. 6. Назовите период.
ЗАПОЛНЕНИЕ МЕДИЦИНСКОЙ ДОКУМЕНТАЦИИ МЕДСЕСТРОЙ ПРИЕМНОГО ОТДЕЛЕНИЯ 1. Журнал ЭКСТРЕННОЙ (срочной!) госпитализации пациента — Ф.И.О. пациента.
ПРИЧИНЫ БЕЗРАБОТИЦЫ Безработица и ее социально-экономические последствия Понятие о безработице и ее причины Безработица – ситуация в экономике.
Показатели уровня экономического развития страны Разнообразное сочетание факторов производства и условий развития различных стран не позволяет оценивать уровень экономического.
Электронные генераторы
Электронный генератор — электронное устройство, вырабатывающее электрические колебания определенной частоты и формы, используя энергию источника постоянного напряжения (тока).
Различают генераторы с самовозбуждением (автогенераторы) и генераторы с внешним возбуждением. Любой автогенератор содержит колебательную систему и усилительный элемент (на биполярном или полевом транзисторе), связанные положительной обратной связью.
Основными характеристиками генератора являются форма, частота и мощность колебаний. По форме различают электронные генераторы гармонических (почти синусоидальных) колебаний и так называемые релаксационные генераторы различной формы. По частоте автогенераторы подразделяются на генераторы инфранизкой (от долей герц до 10 Гц), низкой (от 10 Гц до 100 кГц), высокой (от 100 кГц до 10 МГц) и сверхвысокой (свыше 10 МГц) частот.
Структурная схема генератора гармонических колебаний представлена на рис. 4.12.
Генератор состоит из усилителя У (нелинейного элемента НЭ) с комплексным коэффициентом усиления по напряжению
и четырехполюсника положительной обратной связи ОС (линейного элемента ЛЭ в виде LC — или RC -звеньев) с комплексным коэффициентом передачи .
Так как то напряжение
Следовательно, установившиеся колебания будут существовать в схеме при условии, что произведение Ки β=1, т. е. при коэффициенте усиления усилителя У, равном единице. При Киβ >1 амплитуда выходного напряжения Um.вых будет непрерывно возрастать (до насыщения активных элементов).
Представляя комплексные коэффициенты Ки и β в показательной форме, т. е. и их произведение получим условие самовозбуждения автоколебаний:
Первое условие отражает процесс баланса фаз, при котором сдвиг фаз в замкнутой цепи автоколебательной системы должен равняться 2πn радиан, а второе условие самовозбуждения — баланс амплитуд — сводится к тому, что на резонансной частоте ω0 активные потери энергии в автогенераторе должны восполняться от источника питания ИП посредством положительной обратной связи. Отметим, что баланс амплитуд обуславливает неизменную амплитуду стационарных колебаний.
При стабильной частоте колебаний условия баланса фаз и баланса амплитуд должны выполняться на одной частоте. Для этого автогенератор должен иметь частотно-зависимую (фазосдвигающую) LC — или RC -цепь, настроенную на эту частоту.
4.7.1. Автогенератор типа L С
Простейший автогенератор с индуктивной связью (рис. 4.13, а) представляет собой однокаскадный усилитель на транзисторе VТ, включенном по схеме с общим эмиттером, с нагрузкой в виде параллельного колебательного контура LК С К и цепи обратной связи, созданной обмоткой LБ, индуктивно связанной с индуктивным элементом LК контура. Усилитель выполнен по схеме с фиксированным напряжением смещения делителем RБ1 и RБ2 и термостабилизируюшей RЭCЭ -цепью.
На вход усилителя через конденсатор CБ, ёмкостное сопротивление которого на частоте генерации незначительно, поступает сигнал обратной связи, представленный ЭДС базовой обмотки LБ.
Коллекторный ток, появившийся в момент включения источника питания — Uп, заряжает конденсатор СК, который затем разряжаясь на индуктивный элемент LК создает в контуре колебания с резонансной частотой
Эти колебания напряжения посредством индуктивной связи передаются на базу транзистора VT, вызывая колебания напряжения Uвх на входе усилителя и пульсации тока коллектора, которые, подпитывая LК С К -контур, восполняют активные потери энергии в нем. Чтобы колебания были незатухающими, нужно выполнить указанные выше два условия самовозбуждения.
Анализ электрического состояния усилителя показывает, что баланс фаз удовлетворяется, если амплитуда напряжения на контуре Um.p равна и противоположна по фазе амплитуде выходного напряжения Um.вых. Это возможно, если обмотка LК включена таким образом, что фаза индуктируемой в ней ЭДС находится в противофазе с напряжением контура uр, а напряжение uвых в однокаскадном усилителе, как известно, противофазно напряжению uвх. Очевидно, что фазы uвх и uвых сдвинуты на 180° + 180° = 360 °.
Второе условие самовозбуждения — баланс амплитуд — сводится к тому, чтобы коэффициент усиления был больше или равен 1/β, т. е. Ки > 1/β.
Процесс возникновения, нарастания и установления колебательного режима удобно пояснить с помощью графика (рис. 4.13, б), где нанесены:
Ки = uвых/ uвх — амплитудная характеристика собственно усилителя и 1/β = uвых/ uвх. ос — прямая, характеризующая обратную связь.
Условию Ки > 1/β на графике соответствует расположение кривой Ки над прямой 1/β на участке 0а.
Пусть наличие колебания uвх1 вызвало на выходе (в соответствии с кривой Ки) колебание uвых1, которое через ПОС создает на входе возросшее колебание uвых2 — что вызовет дальнейшее увеличение выходного напряжения до тех пор, пока не будет достигнута точка а (см. рис. 4.13,б), в которой Ки > 1/β или Ки β=1. В точке а переходный процесс заканчивается и устанавливается стационарный режим гармонических колебаний.
4.7.2. Автогенераторы типа R С
На частотах, меньших 15. 20 кГц, при которых обмотки резонансных контуров получаются громоздкими, целесообразно применение RC -генераторов, выполняемых по структурной схеме (рис. 4.14, а).
Усилитель У (рис. 4.14. в) строится по обычной резистивной схеме, а положительная обратная связь осуществляется с помощью фазовозвращателя Фвр (RC -звеньев,рис. 4.14,б). Условия самовозбуждения таких генераторов прежние. Так как одно RC -звено сдвигает фазу своего выходного напряжения по отношению к её входному на угол, меньший 90°, то применяют трехзвенную структуру. Каждое Г -образное звено должно сдвигать фазу напряжения на 60°.
Частота генерируемых такими схемами синусоидальных колебаний при условии равенства сопротивлений резисторов R и ёмкостей С конденсаторов во всех трех звеньях определяется формулой
Как показывают расчеты, из-за падений напряжения на элементах, отношение uвх / uвых на фазовозвращателе (см. рис. 4.14,б) равно β= 29, поэтому для обеспечения условия баланса амплитуд коэффициент усиления собственно усилителя должен удовлетворять условию Ки ≥29.
Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями: