Что такое ускоряющая разность потенциалов
Перейти к содержимому

Что такое ускоряющая разность потенциалов

  • автор:

3.2. Движение заряженных частиц в электрических и магнитных полях

Электромагнитная сила, действующая на заряженную частицу, складывается из сил, действующих со стороны электрического и магнитного полей:

. (3.2)

Силу, определяемую формулой (3.2), называют обобщенной силой Лоренца. Учитывая действие двух полей, электрического и магнитного, говорят, что на заряженную частицу действует электромагнитное поле.

Рассмотрим движение заряженной частицы в одном только электрическом поле. При этом здесь и далее предполагается, что частица нерелятивистская, т.е. ее скорость существенно меньше скорости света. На частицу действует только электрическая составляющая обобщенной силы Лоренца . Согласно второму закону Ньютона частица движется с ускорением:

, (3.3)

которое направленно вдоль вектора в случае положительного заряда и против векторав случае отрицательного заряда.

Разберем важный случай движения заряженной частицы в однородном электрическом поле. В этом случае частица движется равноускоренно (). Траектория движения частицы зависит от направления ее начальной скорости. Если начальная скорость равна нулю или направлена вдоль вектора, движение частицы прямолинейное и равноускоренное. Если же начальная скорость частицы направлена под углом к вектору, то траекторией движения частицы будет парабола. Траектории движения заряженной частицы в однородном электрическом поле такие же, как и траектории свободно (без сопротивления воздуха) падающих тел в гравитационном поле Земли, которое вблизи поверхности Земли можно считать однородным.

Пример 3.1. Определить конечную скорость частицы массой и зарядом, пролетевшей в однородном электрическом полерасстояние . Начальная скорость частицы равна нулю.

Решение. Так как поле однородно, а начальная скорость частицы равна нулю, движение частицы будет прямолинейным равноускоренным. Запишем уравнения прямолинейного равноускоренного движения с нулевой начальной скоростью:

.

Подставим величину ускорения из уравнения (3.3) и получим:

.

В однородном поле (см. 1.21). Величинуназывают ускоряющей разностью потенциалов. Таким образом, скорость, которую набирает частица, проходя ускоряющую разность потенциалов:

. (3.4)

При движении в неоднородных электрических полях ускорение заряженных частиц переменное, и траектории будут более сложными. Однако, задачу о нахождении скорости частицы, прошедшей ускоряющую разность потенциалов , можно решить исходя из закона сохранения энергии. Энергия движения заряженной частицы (кинетическая энергия) изменяется за счет работы электрического поля:

.

Здесь использована формула (1.5) для работы электрического поля по перемещению заряда . Если начальная скорость частицы равна нулю () или мала по сравнению с конечной скоростью, получим:, откуда следует формула (3.4). Таким образом, эта формула остается справедливой и в случае движения заряженной частицы в неоднородном поле. В этом примере показаны два способа решения физических задач. Первый способ основан на непосредственном применении законов Ньютона. Если же действующие на тело силы переменны, бывает более целесообразным использование второго способа, основанного на законе сохранения энергии.

Теперь рассмотрим движение заряженных частиц в магнитных полях. Изменение кинетической энергии частицы в магнитном поле могло бы произойти только за счет работы силы Лоренца: . Но работа силы Лоренца всегда равна нулю, значит кинетическая энергия частицы, а вместе с тем и модуль ее скорости не изменяются. Заряженные частицы движутся в магнитных полях с постоянными по модулю скоростями. Если электрическое поле может быть ускоряющим по отношению к заряженной частице, то магнитное поля может быть только отклоняющим, т. е. изменять лишь направление ее движения.

Рассмотрим варианты траекторий движения заряда в однородном поле.

1. Вектор магнитной индукции параллелен или антипараллелен начальной скорости заряженной частицы. Тогда из формулы (3.1) следует . Следовательно, частица будет двигаться прямолинейно и равномерно вдоль линий магнитного поля.

2. Вектор магнитной индукции перпендикулярен начальной скорости частицы (на рис. 3.2 вектор магнитной индукции направлен за плоскость чертежа). Второй закон Ньютона для частицы имеет вид:

или.

Сила Лоренца постоянна по величине и направлена перпендикулярно скорости и вектору магнитной индукции. Значит, частица будет двигаться все время в одной плоскости. Кроме того, из второго закона Ньютона следует, что и ускорение частицы будет постоянно по величине и перпендикулярно скорости. Это возможно только тогда, когда траектория частицы – окружность, а ускорение частицы  центростремительное. Подставляя во второй закон Ньютона величину центростремительного ускорения и величину силы Лоренца, находим радиус окружности:

. (3.5)

Отметим, что период вращения частицы не зависит от ее скорости:

.

3. В общем случае вектор магнитной индукции может быть направлен под некоторым углом к начальной скорости частицы (рис. 3.3). Прежде всего, отметим еще раз, что скорость частицы по модулю остается постоянной и равной величине начальной скорости. Скоростьможно разложить на две составляющие: параллельную вектору магнитной индукциии перпендикулярную вектору магнитной индукции.

Ясно, что если бы частица влетела в магнитное поле, имея только составляющую , то она в точности как в случае 1 двигалась бы равномерно по направлению вектора индукции.

Если бы частица влетела в магнитное поле, имея одну только составляющую скорости , то она оказалась бы в тех же условиях, что и в случае 2. И, следовательно, двигалась бы по окружности, радиус которой определяется опять-таки из второго закона Ньютона:

.

Таким образом, результирующее движение частицы представляет собой одновременно равномерное движение вдоль вектора магнитной индукции со скоростью и равномерное вращение в плоскости, перпендикулярной вектору магнитной индукции со скоростью. Траектория такого движения представляет собой винтовую линию или спираль (см. рис. 3.3). Шаг спирали– расстояние, пролетаемое частицей вдоль вектора индукции за время одного оборота:

.

Откуда известны массы мельчайших заряженных частиц (электрона, протона, ионов)? Каким образом удается их «взвесить» (ведь, на весы их не положишь!)? Уравнение (3.5) показывает, что для определения массы заряженной частицы нужно знать радиус ее трека при движении в магнитном поле. Радиусы треков мельчайших заряженных частиц определяют с помощью камеры Вильсона, помещенной в магнитное поле, или с помощью более совершенной пузырьковой камеры. Принцип их работы прост. В камере Вильсона частица движется в пересыщенном водяном паре и является ядром конденсации пара. Микрокапельки, конденсирующиеся при пролете заряженной частицы, отмечают ее траекторию. В пузырьковой камере (изобретенной лишь полвека назад американским физиком Д. Глейзером) частица движется в перегретой жидкости, т.е. нагретой выше точки ее кипения. Это состояние неустойчиво и при пролете частицы происходит вскипание, вдоль ее следа образуется цепочка пузырьков. Подобную картину можно наблюдать, бросив в стакан с пивом крупинку поваренной соли: падая, она оставляет след из пузырьков газа. Пузырьковые камеры являются важнейшим инструментом для регистрации мельчайших заряженных частиц, являясь по сути, основными информативными приборами экспериментальной ядерной физики.

3.2. Движение заряженных частиц в электрических и магнитных полях

Электромагнитная сила, действующая на заряженную частицу, складывается из сил, действующих со стороны электрического и магнитного полей:

. (3.2)

Силу, определяемую формулой (3.2), называют обобщенной силой Лоренца. Учитывая действие двух полей, электрического и магнитного, говорят, что на заряженную частицу действует электромагнитное поле.

Рассмотрим движение заряженной частицы в одном только электрическом поле. При этом здесь и далее предполагается, что частица нерелятивистская, т.е. ее скорость существенно меньше скорости света. На частицу действует только электрическая составляющая обобщенной силы Лоренца . Согласно второму закону Ньютона частица движется с ускорением:

, (3.3)

которое направленно вдоль вектора в случае положительного заряда и против векторав случае отрицательного заряда.

Разберем важный случай движения заряженной частицы в однородном электрическом поле. В этом случае частица движется равноускоренно (). Траектория движения частицы зависит от направления ее начальной скорости. Если начальная скорость равна нулю или направлена вдоль вектора, движение частицы прямолинейное и равноускоренное. Если же начальная скорость частицы направлена под углом к вектору, то траекторией движения частицы будет парабола. Траектории движения заряженной частицы в однородном электрическом поле такие же, как и траектории свободно (без сопротивления воздуха) падающих тел в гравитационном поле Земли, которое вблизи поверхности Земли можно считать однородным.

Пример 3.1. Определить конечную скорость частицы массой и зарядом, пролетевшей в однородном электрическом полерасстояние . Начальная скорость частицы равна нулю.

Решение. Так как поле однородно, а начальная скорость частицы равна нулю, движение частицы будет прямолинейным равноускоренным. Запишем уравнения прямолинейного равноускоренного движения с нулевой начальной скоростью:

.

Подставим величину ускорения из уравнения (3.3) и получим:

.

В однородном поле (см. 1.21). Величинуназывают ускоряющей разностью потенциалов. Таким образом, скорость, которую набирает частица, проходя ускоряющую разность потенциалов:

. (3.4)

При движении в неоднородных электрических полях ускорение заряженных частиц переменное, и траектории будут более сложными. Однако, задачу о нахождении скорости частицы, прошедшей ускоряющую разность потенциалов , можно решить исходя из закона сохранения энергии. Энергия движения заряженной частицы (кинетическая энергия) изменяется за счет работы электрического поля:

.

Здесь использована формула (1.5) для работы электрического поля по перемещению заряда . Если начальная скорость частицы равна нулю () или мала по сравнению с конечной скоростью, получим:, откуда следует формула (3.4). Таким образом, эта формула остается справедливой и в случае движения заряженной частицы в неоднородном поле. В этом примере показаны два способа решения физических задач. Первый способ основан на непосредственном применении законов Ньютона. Если же действующие на тело силы переменны, бывает более целесообразным использование второго способа, основанного на законе сохранения энергии.

Теперь рассмотрим движение заряженных частиц в магнитных полях. Изменение кинетической энергии частицы в магнитном поле могло бы произойти только за счет работы силы Лоренца: . Но работа силы Лоренца всегда равна нулю, значит кинетическая энергия частицы, а вместе с тем и модуль ее скорости не изменяются. Заряженные частицы движутся в магнитных полях с постоянными по модулю скоростями. Если электрическое поле может быть ускоряющим по отношению к заряженной частице, то магнитное поля может быть только отклоняющим, т. е. изменять лишь направление ее движения.

Рассмотрим варианты траекторий движения заряда в однородном поле.

1. Вектор магнитной индукции параллелен или антипараллелен начальной скорости заряженной частицы. Тогда из формулы (3.1) следует . Следовательно, частица будет двигаться прямолинейно и равномерно вдоль линий магнитного поля.

2. Вектор магнитной индукции перпендикулярен начальной скорости частицы (на рис. 3.2 вектор магнитной индукции направлен за плоскость чертежа). Второй закон Ньютона для частицы имеет вид:

или.

Сила Лоренца постоянна по величине и направлена перпендикулярно скорости и вектору магнитной индукции. Значит, частица будет двигаться все время в одной плоскости. Кроме того, из второго закона Ньютона следует, что и ускорение частицы будет постоянно по величине и перпендикулярно скорости. Это возможно только тогда, когда траектория частицы – окружность, а ускорение частицы  центростремительное. Подставляя во второй закон Ньютона величину центростремительного ускорения и величину силы Лоренца, находим радиус окружности:

. (3.5)

Отметим, что период вращения частицы не зависит от ее скорости:

.

3. В общем случае вектор магнитной индукции может быть направлен под некоторым углом к начальной скорости частицы (рис. 3.3). Прежде всего, отметим еще раз, что скорость частицы по модулю остается постоянной и равной величине начальной скорости. Скоростьможно разложить на две составляющие: параллельную вектору магнитной индукциии перпендикулярную вектору магнитной индукции.

Ясно, что если бы частица влетела в магнитное поле, имея только составляющую , то она в точности как в случае 1 двигалась бы равномерно по направлению вектора индукции.

Если бы частица влетела в магнитное поле, имея одну только составляющую скорости , то она оказалась бы в тех же условиях, что и в случае 2. И, следовательно, двигалась бы по окружности, радиус которой определяется опять-таки из второго закона Ньютона:

.

Таким образом, результирующее движение частицы представляет собой одновременно равномерное движение вдоль вектора магнитной индукции со скоростью и равномерное вращение в плоскости, перпендикулярной вектору магнитной индукции со скоростью. Траектория такого движения представляет собой винтовую линию или спираль (см. рис. 3.3). Шаг спирали– расстояние, пролетаемое частицей вдоль вектора индукции за время одного оборота:

.

Откуда известны массы мельчайших заряженных частиц (электрона, протона, ионов)? Каким образом удается их «взвесить» (ведь, на весы их не положишь!)? Уравнение (3.5) показывает, что для определения массы заряженной частицы нужно знать радиус ее трека при движении в магнитном поле. Радиусы треков мельчайших заряженных частиц определяют с помощью камеры Вильсона, помещенной в магнитное поле, или с помощью более совершенной пузырьковой камеры. Принцип их работы прост. В камере Вильсона частица движется в пересыщенном водяном паре и является ядром конденсации пара. Микрокапельки, конденсирующиеся при пролете заряженной частицы, отмечают ее траекторию. В пузырьковой камере (изобретенной лишь полвека назад американским физиком Д. Глейзером) частица движется в перегретой жидкости, т.е. нагретой выше точки ее кипения. Это состояние неустойчиво и при пролете частицы происходит вскипание, вдоль ее следа образуется цепочка пузырьков. Подобную картину можно наблюдать, бросив в стакан с пивом крупинку поваренной соли: падая, она оставляет след из пузырьков газа. Пузырьковые камеры являются важнейшим инструментом для регистрации мельчайших заряженных частиц, являясь по сути, основными информативными приборами экспериментальной ядерной физики.

Как происходит движение заряженных частиц в магнитном поле? Что такое сила Лоренца? Каковы траектории движения частиц в магнитном поле?

На частицы действует сила Лоренца, направленная перпендикулярно к направлению вектора скорости и вектору магнитной индукции. Если вектор скорости направлен перпендикулярно вектору магнитной индукции, заряженная частица будет двигаться по окружности, если под некоторым углом — по спирали, если по направлению линий магнитной индукции-по прямой линии.

Сила Лоренца-сила, с которой электромагнитное поле, согласно классической электродинамике, действует на точечную заряженную частицу.

  1. Сформулируйте правила для нахождения направления силы Лоренца. По какой траектории будет двигаться электрический заряд в однородном магнитном поле, если направление скорости заряда и индукции поля таковы: ↑↑ , ⇅ , ⊥ ,а также и ориентированы произвольно относительно друг друга (угол α между векторами и произволен). Рассмотрите случаи движения зарядов разного знака

Для определения направления силы Лоренца используют правило левой руки(если кисть расположить так, чтобы вектор индукции магнитного поля входил в ладонь,4 пальца указывают направление скорости положительного заряда(или противоположное скорости отрицательного заряда),то отогнутый в плоскости ладони большой палец покажет направление силы).

При движении частицы со скоростью вдоль (или в обратную сторону) линий магнитной индукции магнитное поле не влияет на ее движение, так как модуль силы равен нулю-частица двигается равномерно и прямолинейно.

  1. Выведите формулы для радиуса R,периода T и шага h при движении заряда по винтовой линии. Скорость заряда ,его величину q, индукцию поля и угол α между ними считайте известными. Объясните зависимость(независимость) от скорости движения заряда периода T обращения заряда по окружности радиуса R.

II закон Ньютона: ;

Период обращения по окружности винта спирали:

Шаг винтовой линии:

По II закону Ньютона:

В чем сущность метода электронной фокусировки (метод Буша), используемого в данной работе?

Сущность метода электронной фокусировки (метод Буша) заключается в том, что электроны летящие вдоль оси трубки не испытывают воздействия поля катушки и движутся прямо к экрану. Электроны же, отклоняющиеся от оси трубки, приобретают составляющую скорости, перпендикулярную линиям магнитного поля. Эти электроны «закручиваются» в сторону оси трубки. Напряженность магнитного поля должна быть подобрана такой, чтобы электроны встречались в одной точке на поверхности экрана. Это достигается регулировкой постоянного тока, питающего катушку.

Получите рабочую формулу для определения e/m.

тогда выразим e/m:

Нарисуйте схему экспериментальной установки и объясните принцип ее работы в компьютерной модели.

Р абота должна проводиться в строгой последовательности:

  1. ознакомление с рекомендациями
  2. параметры установки
  3. состояние аппаратуры
  4. анодное напряжение
  5. формирование пучка
  6. переключатель П

У вас большие запросы!

Точнее, от вашего браузера их поступает слишком много, и сервер VK забил тревогу.

Эта страница была загружена по HTTP, вместо безопасного HTTPS, а значит телепортации обратно не будет.
Обратитесь в поддержку сервиса.

Вы отключили сохранение Cookies, а они нужны, чтобы решить проблему.

Почему-то страница не получила всех данных, а без них она не работает.
Обратитесь в поддержку сервиса.

Вы вернётесь на предыдущую страницу через 5 секунд.
Вернуться назад

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *