Куда следует передвинуть ползунок чтобы сопротивление увеличить
Перейти к содержимому

Куда следует передвинуть ползунок чтобы сопротивление увеличить

  • автор:

Куда следует передвинуть ползунок, чтобы сопротивление увеличить?

Пожалуйста, войдите или зарегистрируйтесь для публикации ответа на этот вопрос.

решение вопроса

Связанных вопросов не найдено

Обучайтесь и развивайтесь всесторонне вместе с нами, делитесь знаниями и накопленным опытом, расширяйте границы знаний и ваших умений.

поделиться знаниями или
запомнить страничку

  • Все категории
  • экономические 43,679
  • гуманитарные 33,657
  • юридические 17,917
  • школьный раздел 612,652
  • разное 16,911

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

  • Обратная связь
  • Правила сайта

ГДЗ Физика 7-9 классы сборник вопросов и задач к учебнику Перышкина автор Марон. Закон Ома для участка цепи. Номер №1048

Задание рисунок 1

К какой точке реостата (D или С) следует передвинуть ползунок, чтобы увеличить показания вольтметра (рис. 144 )?

рис. 144

reshalka.com

ГДЗ Физика 7-9 классы сборник вопросов и задач к учебнику Перышкина автор Марон. Закон Ома для участка цепи. Номер №1048

Решение

Для увеличения показаний вольтметра ползунок реостата нужно передвинуть к точке D.
Если ползунок реостата передвинем к точке D, длина рабочей части реостата уменьшится, сопротивление реостата становится меньше. Так как реостат соединен последовательно с резистором, общее сопротивление цепи уменьшится. Следовательно, сила тока в цепи согласно закону Ома − увеличится. Так как сила тока внутри резистора увеличится, а его сопротивление останется прежним, то согласно закону Ома, напряжение на контактах резистора увеличится, значит станет больше и показание вольтметра (так как они подключены параллельно).

Резисторы

Более половины деталей, используемых в современных радиоэлектронных устройствах, составляют резисторы.

Резистором (от лат. resisto — сопротивляюсь) называют выпускаемую промышленностью деталь, обеспечивающую заданное (номинальное) электрическое сопротивление цепи. Сопротивление резистора указывают на его корпусе либо в виде числового значения, либо в закодированной форме (например, в виде определенных цветных полосок). Условное обозначение резистора приведено в таблице 2 (см. § 9).

Резисторы

В зависимости от материала, из которого изготовлена токопроводящая часть резистора, различают металлические, углеродистые, керамические и другие резисторы. Для защиты от пыли, влаги и механических повреждений снаружи их покрывают стеклоэмалью или каким-либо другим твердым материалом (рис. 34, а).

Лабораторные резисторы, используемые в школе, имеют вид проволочных спиралей, помещенных в углубление пластмассовой колодки (рис. 34, б).

В школьных экспериментах применяют также демонстрационные магазины сопротивлений, состоящие из нескольких резисторов в виде проволочных спиралей, рассчитанных на 1, 2 и 5 Ом (рис. 34, в).

Существуют резисторы как с постоянным сопротивлением, так и с переменным. К последним относятся реостаты. Условное обозначение реостата приведено в таблице 2.

Действие реостатов основано на зависимости сопротивления проводника от его длины. Конструкция реостатов позволяет изменять длину участка, по которому идет ток. При увеличении этой длины сопротивление реостата возрастает, при уменьшении убывает.

Различают рычажные и ползунковые реостаты.

Рычажный реостат изображен на рисунке 35. Передвигая рычаг реостата от одного контакта к другому, можно вводить в цепь большее или меньшее число проволочных спиралей и тем самым скачком (ступенчато) изменять сопротивление цепи.

Рычажный и ползунковый реостаты

Ползунковый реостат изображен на рисунке 36. Его сопротивление можно изменять плавно. Для этого реостат снабжен скользящим контактом (ползунком). Перемещая его, мы постепенно включаем большую или меньшую часть обмотки реостата, и его сопротивление плавно изменяется.

Путем изменения сопротивления цепи можно влиять на силу тока в ней. От нее, в свою очередь, зависят действия, оказываемые током в различных устройствах. Реостаты позволяют эти действия как усиливать, так и ослаблять.

. 1. Что такое резистор? Как он обозначается на схемах? 2. Что такое реостат? 3. Какие виды реостатов вы знаете? Чем они отличаются друг от друга? 4. Как обозначается реостат на схемах? 5. Зачем нужны реостаты? 6. В какую сторону следует передвинуть рычаг реостата, изображенного на рисунке 35, чтобы его сопротивление уменьшилось? 7. В какую сторону следует переместить ползунок реостата, изображенного на рисунке 36, чтобы его сопротивление увеличилось?

Реостаты

Когда мы собираем электрическую цепь и замыкаем ее, возникает электрический ток. Его характеризует величина, называемая силой тока. При последовательном соединении элементов она будет одинакова на всех участках цепи ($I = I_1 = I_2 = … = I_n$), а при параллельном — разветвляться ($I = I_1 + I_2 + … + I_n$). Но мы не можем изменить величину силы тока в цепи или на ее участке, не поменяв проводники или источник тока.

Тем не менее при проведении экспериментов было бы удобно иметь возможность изменять силу тока в цепи и следить за изменениями, которые при этом будут происходить. Также это удобно в различных электрических приборах и устройствах. Например, регулируя громкость звука аудиоустройств, мы меняем силу тока в их динамиках. Изменяя силу тока в электродвигателе швейной машинки, мы можем регулировать скорость его вращения.

В большинстве случаев для изменения силы тока в цепи используется специальный прибор — реостат. Именно об этом приборе мы и поговорим на данном уроке. Мы рассмотрим его устройство и действие, правила подключения в цепь.

Устройство простейшего реостата

Чтобы понять принцип работы любого реостата, рассмотрим самый простейший из них.

Для этого возьмем проволоку с достаточно большим удельным сопротивлением (например, нихромовую). Подключим ее последовательно в цепь, состоящую из источника тока, ключа и амперметра. Сделаем это, используя контакты A и B (рисунок 1).

Мы можем передвигать один из контактов — B. С помощью него мы можем изменять длину включенного в цепь участка проволоки AB. Другой участок проволоки при этом включен в цепь не будет.

При изменении длины участка AB будет изменяться сопротивление всей цепи. Каким образом?

Изменяя длину включенного в цепь участка проволоки, мы изменяем его сопротивление ($R = \frac$). Будет изменяться и общее сопротивление цепи, а следовательно, и сила тока в ней.

Ползунковый реостат

Те реостаты, которые применяются на практике, имеют более удобную и компактную форму. Они также содержат в своей основе проволоку с большим удельным сопротивлением.

Почему в реостатах используют проволоку с большим сопротивлением?
Взглянем еще раз на формулу для расчета сопротивления проводника: $R = \frac$. Если у нас будет проводник с малым удельным сопротивлением, то он должен быть очень длинным. Это не всегда удобно при изготовлении реостатов.

При проведении лабораторных работ вы чаще всего будете использовать ползунковый реостат (рисунок 2).

Как устроен ползунковый реостат?
В этом реостате стальная проволока 1 намотана на керамический цилиндр. То есть сам цилиндр проводить ток не будет, так как он сделан из диэлектрика. Сама проволока тоже покрыта диэлектриком — окалиной. Это сделано для того, чтобы витки были изолированы друг от друга.

Над такой обмоткой расположен металлический стержень 2. К нему крепится ползунок 3, который своими контактами 4 прижат к обмотке. Этот ползунок мы можем передвигать.

Когда мы его передвигаем, слой окалины на проволоке стирается, и ток проходит через ползунок и металлический стержень.

Реостат имеет две клеммы. Одна находится на конце металлического стержня (клемма 5), а вторая соединена с одним из концов обмотки и расположена на корпусе реостата (клемма 6). С помощью этих клемм реостат включают в цепь.

Использование реостата

При перемещении ползунка по стержню будет изменяться сопротивление всего реостата. То есть ползунок дает нам возможность увеличивать или уменьшать сопротивление цепи. Изменяя сопротивление, мы будем изменять и силу тока в цепи.

Передвигая ползунок и сокращая длину включенной в цепь обмотки, мы увеличим силу тока в цепи ($I = \frac$). Передвигая ползунок в другую сторону, мы увеличим длину подключенной обмотки и, наоборот, уменьшим силу тока.

Каждый реостат рассчитан на определенное сопротивление и на наибольшую допустимую силу тока. Эти значения указываются на самом приборе.

Превышать максимально допустимое значение силы тока не рекомендуется. Обмотка может очень сильно нагреться, иногда даже раскалиться. В такой ситуации реостат может перегореть — выйти из строя.

Как на схемах электрических цепей изображают реостат?
Реостаты имеют свой условный знак для обозначения на схемах электрической цепи (рисунок 3). Это обозначение ясно дает понять, в какую сторону нужно передвигать ползунок реостата, чтобы увеличить сопротивление в цепи (вправо).

Реже вы можете встретить другое обозначение реостата (рисунок 4).

Подключение реостата в электрическую цепь

Реостат включается в электрическую цепь последовательно. Пример такой цепи с подсоединенным реостатом изображен на схеме (рисунок 5).

Зажимы 1 и 2 подключаются к источнику тока. Им может быть как аккумулятор или гальванический элемент, так и розетка.

Если мы увеличим сопротивление реостата, то накал лампочки (на рисунке 4) уменьшится. Значит, сила тока тоже уменьшится. И, наоборот, при уменьшении сопротивления реостата лампочка будет гореть ярче.

Такой способ довольно часто используют в выключателях для регулировки интенсивности освещения.

Путь тока по реостату, включенному в цепь

На рисунке 6 показан путь тока по реостату, если клеммы 1 и 2 подключены в цепь. Электрический ток проходит по обмотке реостата, потом через скользящий контакт ползунка он проходит по металлическому стержню и снова попадает в электрическую цепь.

Упражнения

Упражнение №1

На рисунке 7 изображен реостат, с помощью которого можно менять сопротивление в цепи не плавно, а ступенями — скачками. Рассмотрите рисунок и по нему опишите, как действует такой реостат.

Такой реостат называется рычажным. В нижней его части расположен специальный рычаг, с помощью которого можно включать в цепь разное количество проводников (спиралей), соединенных последовательно друг с другом. От количества включенных в цепь спиралей будет зависеть их суммарное сопротивление и, следовательно, сила тока в цепи.

Упражнение №2

Если каждая спираль реостата (рисунок 7) имеет сопротивление, равное $3 \space Ом$, то какое сопротивление будет введено в цепь при положении переключателя, изображенном на рисунке? Куда надо поставить переключатель, чтобы с помощью этого реостата увеличить сопротивление цепи еще на $18 \space Ом$?

Спирали (проводники) соединены последовательно. Значит, суммарное сопротивление будет рассчитывать по формуле: $R = R_1 + R_2 + … + R_n$.

Посмотрим, сколько проводников включены в цепь при положении рычага на рисунке 7. В цепь включены 4 спирали (рисунок 8).

Так как сопротивление каждой спирали равно $3 \space Ом$, мы можем записать:
$R = 3 \space Ом + 3 \space Ом + 3 \space Ом + 3 \space Ом = 3 \space Ом \cdot 4 = 12 \space Ом$.
Значит, в цепь будет введено сопротивление, равное $12 \space Ом$.

Чтобы ответить на второй вопрос, определим количество спиралей, которые дадут сопротивление в $18 \space Ом$:
$n = \frac = \frac = 6$.

Посмотрим на рисунок 7 или 8. Чтобы включить в цепь еще 6 спиралей, нужно передвинуть рычаг в крайнее правое положение (рисунок 9).

Упражнение №3

В цепь включены: источник тока, ключ, электрическая лампа и ползунковый реостат. Нарисуйте схему этой цепи. Куда надо передвинуть ползунок реостата, чтобы лампа светилась ярче?

Схема такой цепи изображена на рисунке 10.

Чтобы лампа светилась ярче, нужно увеличить силу тока в цепи. А для этого нужно уменьшить сопротивление ($I = \frac$). Для этого необходимо передвинуть ползунок реостата влево. Так мы уменьшим длину включенной в цепь обмотки, что и приведет к уменьшению сопротивления ($R = \frac$).

Упражнение №4

Требуется изготовить реостат на $20 \space Ом$ из никелиновой проволоки площадью сечения $3 \space мм^2$. Какой длины проволока потребуется для этого?

Дано:
$R = 20 \space Ом$
$S = 3 \space мм^2$
$\rho = 0.4 \frac$

Показать решение и ответ

Решение:

Запишем формулу для расчета сопротивления проводника: $R = \frac$.

Получается, что для изготовления реостата на $20 \space Ом$ потребуется $150 \space м$ никелиновой проволоки.

Ответ: $l = 150 \space м$.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *