Как найти электрическую энергию
Перейти к содержимому

Как найти электрическую энергию

  • автор:

1. Электроэнергия

В каждой квартире пользуются электроэнергией. Расход электроэнергии зависит от мощности используемых приборов и от времени их действия.
Обычно совершённую током работу называют потреблённой электроэнергией \(E\) ( E = A ) .

Обрати внимание!
Электроэнергия = Электрическая мощность · Время

Потреблённую электроэнергию в быту обычно выражают в киловатт-часах кВт ⋅ ч , а не в джоулях \((Дж)\).

Перевод киловатт-часов в джоули:

1 кВт ⋅ ч = 1000 Вт ⋅ 3600 с = 3 600000 Вт ⋅ с = 3 600 000 Дж = 3,6 МДж .

Потребление электроэнергии в киловатт-часах учитывают счётчики

электроэнергии.

За электроэнергию необходимо платить по установленному тарифу. \(1\) кВт ⋅ ч электроэнергии стоит \(4,5\) руб.

Сколько стоит \(4\)-часовой просмотр телевизора, если его мощность равна \(200\) Вт?
Переводим данные единицы не в единицы СИ (ватты и секунды), а в единицы, в которых учитывается количество потреблённой электроэнергии (киловатты и часы).

P = 200 Вт = 0, 2 кВт t = 4 ч Тариф = 4,5 руб / кВт ⋅ ч Стоимость − ? Стоимость = E ⋅ Тариф E = P ⋅ t Стоимость = P ⋅ t ⋅ Тариф Стоимость = 0, 2 ⋅ 4 ⋅ 4,5 = 3, 6 ( руб .)

Чтобы определить количество потреблённой за месяц электроэнергии или совершённую током работу, необходимо:

1. Определить показания счётчика в начале и в конце месяца.
2. Разница показаний — количество потреблённой электроэнергии в течение месяца в киловатт-часах.
3. Полученное количество электроэнергии умножить на тариф.

1.1.5. Электрическая энергия и мощность

Электрическая энергия — это способность электромагнитного поля производить работу, преобразовываясь в другие виды энергии.

Электроэнергия — наиболее совершенный и универсальный вид, сравнительно легко преобразующийся в другие виды энергии: механическую, тепловую, световую, химическую и др.

Совершение работы связано с перемещением зарядов через элементы, обладающие сопротивлением. Единица измерения электроэнергии (работы) — джоуль (Дж). Она соответствует работе по перемещению заряда в один кулон между точками цепи с напряжением в один вольт: 1 Дж = 1 В • 1 Кл.

Электрическая мощность — это работа по перемещению электрических зарядов в единицу времени.

Дж Единица измерения мощности — ватт (Вт), Вт =Дж/с.

Различают активную, реактивную и полную мощности. Активная мощность — это мощность, связанная с преобразованием электроэнергии в тепловую или механическую энергию.

В цепях постоянного тока активная мощность, Вт,

Р = U I = I 2 R, в цепях переменного синусоидального тока

Р = U I cos = I 2 R

где U действующее значение напряжения. В, U = ;

I действующее значение тока. A, I= .

— угол сдвига между векторами напряжения и тока, град.

Реактивная (индуктивная) мощность в цепях переменного синусоидального тока в установившихся режимах связана с созданием магнитных полей в элементах цепи и покрытием потерь на так называемые магнитные поля рассеяния этих элементов. QL= U I sin = I 2 XL .

Реактивная (емкостная) мощность в цепях переменного синусоидального тока в установившихся режимах направлена на создание электрических полей в диэлектрических средах элементов цепи.

QC= U I cos = I 2 XC.

Единица измерения реактивной мощности — вар.

В цепях постоянного тока в установившихся режимах реактивные мощности равны нулю.

Полная мощность элемента в цепи переменного синусоидального тока определяется как геометрическая сумма активной и реактивной мощностей: или S = UI, или S = I 2 z,

где z = — полное сопротивление цепи. Ом. Единица измерения полной мощности — В-А

1.2. Основные законы электротехники

Закон Кулона. Сила взаимодействия между двумя точечными неподвижными зарядами q1 и q2, расположенными на расстоянии R друг от друга в однородной среде прямо пропорциональна величине зарядов и обратно пропорциональна квадрату расстояния между ними:

Закон Ома справедлив для цепей постоянного и переменного синусоидального тока и связывает между собой величины сопротивления элемента цепи, его тока и напряжения.

Падение напряжения на участке цепи пропорционально току и величине сопротивления этого участка:

при постоянном токе U = IR,

при переменном токе U = I z.

Например, для электрической цепи (рис. 1.1): U = I1 R1.

Обобщенный закон Ома имеет место для цепи (ветви) тп постоянного или переменного тока, содержащей источники ЭДС и J, и сопротивления R или Z:

при постоянном токе

при переменном токе

где Umn напряжение между началом и концом ветви тп,

— алгебраическая сумма всех ЭДС, находящихся в этой ветви;

— арифметическая сумма всех сопротивлений в ветви;

— алгебраическая сумма всех комплексных сопротивлений в ветви при переменном токе.

Из обобщенного закона Ома следует, в частности, что напряжение на зажимах источника ЭДС равно величине ЭДС минус падение напряжения на внутреннем сопротивлении источника.

. Первый закон Кирхгофа. Алгебраическая сумма всех токов, сходящихся в любом узле электрической цепи, равна нулю.

Первый закон Кирхгофа является одним из непосредственных следствий закона сохранения энергии.

Для цепи постоянного тока:

Для цепи переменного тока: или

где комплексные действующие значения синусоидальных токов;

ik(t) —мгновенные значения токов;

= -1 если ток ветви втекает в узел и = +1 если ток вытекает из узла.

Второй закон Кирхгофа. Алгебраическая сумма электродвижущих сил какого-либо замкнутого контура электрической цепи равна алгебраической сумме падений напряжений в нем.

Для цепей постоянного тока:

Для цепей переменного тока: или

где ek(t) — мгновенные значения переменных ЭДС;

uk(t) , — мгновенные значения падения напряжений на пассивных элементах контура;

— векторы комплексных действующих значений ЭДС;

— векторы комплексных действующих значений падений напряжений. Направление обхода контура выбирается произвольным. ЭДС имеют знак плюс, если их направление совпадает с направлением обхода контура. Падения напряжений имеют знак плюс, если выбранные знаки токов в ветвях контура совпадают с направлением обхода контура.

Закон электромагнитной индукции Фарадея. Закон связывает ЭДС, наводимую в произвольном контуре или проводнике, помещенном в магнитное поле, со скоростью изменения магнитного потока поля или скоростью движения контура или проводника относительно неизменного по величине магнитного потока поля. ЭДС измеряется в вольтах (В).

Электродвижущая сила е, наводимая в проводнике или контуре, пропорциональна скорости изменения магнитного потока Ф, пронизывающего этот проводник или контур, взятой со знаком минус:

В соответствии с законом Фарадея изменение тока, протекающего в контуре с индуктивностью L, вызывает изменения его магнитного потока, что наводит в этом контуре ЭДС, называемую ЭДС самоиндукции: ,

ЭДС взаимоиндукции наводится в одном из магнитносвязанных контуров, если в другом происходит изменение величины тока:

где M12— коэффициент взаимоиндукции, Гн.

Знак (+) ставят при встречных направлениях магнитных потоков, (-) — при согласных направлениях.

При перемещении проводника в магнитном поле с неизменным магнитным потоком в нем наводится ЭДС, В: е = В l sin,

где В магнитная индукция поля, Тл;

l— длина проводника, м;

— скорость движения проводника, м/с;

 — угол между векторами магнитной индукции и скорости, град.

Закон электромагнитной индукции носит фундаментальный характер и лежит в основе принципа действия всех современных электромеханических преобразователей энергии: электрических машин, электрических аппаратов и т.д.

Закон Ленца. Если по произвольному контуру, протекает изменяющийся ток, то он создает собственный изменяющийся магнитный поток, наводящий в контуре противо -ЭДС, направленную так, чтобы воспрепятствовать всякому изменению тока.

Указанную противо-ЭДС называют также ЭДС самоиндукции. Это обстоятельство отмечается в приведенных выше соотношениях знаком минус. Таким образом, появление в контуре с током ЭДС самоиндукции возможно при двух непременных условиях: изменяющемся характере тока и наличии индуктивности в цепи.

Это свидетельствует об ошибочности представлений некоторых авторов, полагающих, что ЭДС самоиндукции определяет меру электромагнитной инерции элемента цепи. Мерой инерции является величина индуктивности элемента цепи. ЭДС самоиндукции играет в электротехнических устройствах важную роль.

Закон Джоуля-Ленца. Закон определяет меру теплового действия электрического тока.

Количество теплоты, выделяющейся током в проводнике, равно работе электрического поля по перемещению заряда за время t:

Q=Ut=I 2 r t.

Единица измерения количества теплоты — джоуль (Дж). Поскольку 1 кал = 4.1868 Дж, а 1 Дж = 0,24 кал, то количество теплоты, измеряемое в калориях: Q=0,24 I 2 r t.

Закон электромагнитных сил Ампера. Сила механического взаимодействия проводника с током I и магнитного поля с индукцией В прямо пропорциональна произведению магнитной индукции, длины проводника и силы тока в проводнике: F = В l I sin,

где F сила взаимодействия, Н;

l длина проводника, м;

— угол между векторами магнитной индукции и тока.

Сила взаимодействия двух достаточно длинных проводов (l = l1 =l2), расположенных параллельно на расстоянии :

где F — сила взаимодействия, Н;

I1 и I2 токи в проводах. А;

r , 0 относительная и абсолютная магнитная проницаемости.

Энергия и мощность электрического тока

В любой замкнутой электрической цепи источник затрачивает электрическую энергию Wистна перемещение единицы положительного заряда по всей цепи: и на внутреннем и на внешнем участках.

и;

Энергия источника определяется выражением: Wист=Eq=EIt= (U0+U)It;

Энергия источника (полезная), которая расходуется на потребителе: W=UIt;

Энергия источника (потери), которая расходуется на внутреннем сопротивлении источника: W=U0It;

Преобразование электрической энергии в другие виды энергий происходит с определенной скоростью. Эта скорость определяет электрическую мощность элементов электрической цепи:

;

Мощность источника определяется соотношением:

Мощность потребителя определяется соотношением:

Коэффициент полезного действияэлектрической цепиηопределяется отношением мощности потребителя к мощности источника:

Закон Джоуля — Ленца

Ток, протекая по проводнику, нагревает его (в этом случае электрическая энергия преобразуется в тепловую). Количество выделенного тепла будет определяться количеством электрической энергии, затраченной в этом проводнике.

Дж.

(кал).

Коэффициент 0,24 (электротермический эквивалент) устанавливает зависимость между электрической и тепловой энергией.

Часть3: Режимы работы электрических цепей

В электрических цепях все основные элементы делятся на активные и пассивные. Активными считаются элементы, в которых преобразование энергии сопровождается возникновением ЭДС (аккумуляторы, генераторы). Элементы, в которых ЭДС не возникает, называются пассивными.

Параметры электрических цепей:

Ток в замкнутой цепи ;

Напряжение на клеммах источника ;

Падение напряжения на сопротивлении источника ;

Полезная мощность (мощность потребителя) .

Электрические цепи могут работать в трех режимах:

  • режим холостого хода (цепь разомкнута) R=∞:Iхх=0,U=E,U0=0,P=0.
  • режим короткого замыкания R=0:
  • режим нагрузки R≠0:;;;.

Условие максимальной отдачи мощности: полезная мощность максимальна, когда сопротивление потребителяRстанет равным внутреннему сопротивлению источникаR0. КПД при максимальной отдаче мощности равно 50%, к 100% КПД приближается в режиме, близком к холостому ходу. Нормальным (рабочим) режимом называют такой режим работы цепи, при котором ток, напряжение и мощность не превышают номинальных значений, заданных заводом-изготовителем. Источники тока могут работать в режиме генератора и в режиме нагрузки. Источники, ЭДС которых совпадают с направлением тока в цепи, работают в режиме генератора, а источники , ЭДС которых не совпадают с направлением тока, работают в режиме потребителя. Напряжение источника, работающего в режиме генератора: . Напряжение источника, работающего в режиме потребителя: .

Тема 1.3

Расчет электрических цепей постоянного тока Основной целью расчета электрической цепи является нахождение ее параметров: ток, напряжение, сопротивление, мощность, КПД. Значения параметров дают возможность оценить условия и эффективность работы электротехнического оборудования и приборов во всех участках электрической цепи. Для расчета электрических цепей основой служат законы Ома и Кирхгофа, Джоуля-Ленца. Законы Кирхгофа К характерным элементам электрической цепи относятся ветвь, узел, контур. Ветвью электрической цепи называется ее участок, на всем протяжении которого величина тока имеет одинаковое значение. Ветви, которые содержат источники питания называются активными, а которые не содержат их – пассивными. Узлом электрической цепи называется точка соединения электрических ветвей. Контуром электрической цепи называют замкнутое соединение, в которое могут входить несколько ветвей. Первый закон Кирхгофа Сумма токов входящих в узел равна сумме токов, выходящих из узла. ИЛИ Сумма токов, сходящихся в узле равна нулю. ∑I=0; — математическое выражение первого закона Кирхгофа. Второй закон Кирхгофа Алгебраическая сумма ЭДС в замкнутом контуре электрической цепи равна алгебраической сумме падений напряжений на всех участках этой цепи. ; — математическое выражение второго закона Кирхгофа. Последовательное соединение потребителей Последовательным соединением участков эй цепи называют соединение, при котором через все участки цепи проходит один и тот же ток. Общее напряжение последовательно соединенных элементов равно сумме напряжений на каждом элементе согласно второму закону Кирхгофа: ; В соответствии с законом Ома: ; Из этого соотношения следует:; Таким образом, общее сопротивление цепи с последовательно соединенными элементами равно сумме этих сопротивлений. Параллельное сопротивление потребителей Параллельным соединением участков электрической цепи называется соединение, при котором все участки цепи присоединяются к одной паре узлов, то есть находятся под действием одного и того же напряжения. Общий ток такого соединения согласно первому закона Кирхгофа будет равен сумме токов в отдельных ветвях: ; В соответствии с законом Ома:; Если поделить левую и правую части наU, получим:; Обратная величина общего эквивалентного сопротивления параллельно включенных потребителей равна сумме обратных величин этих потребителей. Величина, обратная сопротивлению определяет проводимость потребителя g. Тогда для параллельно соединенных потребителей справедливо:;

1.5. Электрическая энергия и электрическая мощность

Изобразим схему простейшей электрической цепи, состоя­щей из источника ЭДС с внутренним сопротивлениеми при­емника с сопротивлением(рис. 1.13).

Из закона Ома (1.9)

.

Учитывая, что , запишем

. (1.13)

Умножим левую и правую части уравнения на

, (1.14)

где – работа (энергия) источника.

Так как , то(1.15)

где – энергия, передаваемая потребителю;– энергия, расходуемая на по­тери во внутреннем сопротивлении источника.

Следует отметить, что работа и энергия – понятия равноценные. Энергия – способность источника совершать работу. Чтобы измерить энергию источника, надо измерить работу, которую он совершает, расходуя эту энергию.

Размерность энергии В·А·с=Дж.

На практике за единицу энергии принимают 1 кВт·ч= 3600000Дж.

1.5.2. Электрическая мощность

Электрическая мощность – это физическая величина, характеризующая скорость передачи или преобразования электрической энергии

(1.16)

Размерность мощности – ватт (вт). 1вт– мощность, при которой за одну секунду совершается работа в один джоуль.

Мощность, отдаваемая (полезная) источником энергии потребителю (прием­нику)

(1.17)

Потери мощности во внутреннем сопротивлении

. (1.18)

При работе источника на нагрузку в виде сопротивления преобразование электрической энергии в электрическую мощность выражают с помощью закона Джоуля-Ленца. Мощность, выделяемая (или потребляемая) в сопротивлении R:

.

1.5.3. Кпд источника энергии

Отношение мощности приемника (полезной мощности) к мощности ис­точника энергииназывается его коэффициентом полезного действия (КПД):

(1.19)

Из последней формулы видно, что чем меньше внутреннее сопротивление , тем выше КПД источника. Определим, при каком условии источник энер­гии развивает полезную максимальную мощность. Преобразуем формулу (1.17), учитывая (1.9)

. (1.20)

Исследуем уравнение (1.20) на максимум

(1.21)

отсюда .

Тогда формула (1.20) приобретает вид

. (1.22)

Таким образом, источник ЭДС развивает максимальную полезную мощ­ность, когда внешнее сопротивление равно внутреннему сопротивлению источ­ника.

Однако такой режим является невыгодным, так как в этом случае 50 % энер­гии теряется во внутреннем сопротивлении источника

(1.23)

Режим цепи, при котором внешнее сопротивление цепи равно внутреннему сопротивлению источника энергии, называется режимом согласованной на­грузки. Такой режим используется в телемеханике, электросвязи и автоматике, где передаются малые мощности. Мощные источники, как правило, работают на приемник сопротивлением = (10. 20) , обеспечивая максимальный КПД (более 95 %).

1.6. Закон Ома для участка цепи, содержащего эдс

Рассмотрим участок цепи, содержащий сопротивление и ЭДС (рис. 1.14).

Разность потенциалов между точками и равна напряжению

.

Выразим потенциал точки через потенциал точки. С этой целью сна­чала выражаем потенциал точки через потенциал точки, затем потенциал точки– через потенциал точки(учитывая при этом, что ток протекает от бо­лее высокого потенциала к более низкому и направление действия ЭДС указы­вает на возрастание потенциала).

Для схемы на рис. 1.14 а

.

. (1.24)

Для схемы на рис. 1.14 б:

.

. (1.25)

Из уравнения (1.24) для схемы (рис. 1.14 а)

. (1.26)

Из уравнения (1.25) для схемы (рис. 1.14 б)

. (1.27)

. (1.28)

Последнее уравнение выражает в математической форме закон Ома для уча­стка цепи, содержащего ЭДС.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *