Школа миллиомметра как пользоваться
Перейти к содержимому

Школа миллиомметра как пользоваться

  • автор:

У вас большие запросы!

Точнее, от вашего браузера их поступает слишком много, и сервер VK забил тревогу.

Эта страница была загружена по HTTP, вместо безопасного HTTPS, а значит телепортации обратно не будет.
Обратитесь в поддержку сервиса.

Вы отключили сохранение Cookies, а они нужны, чтобы решить проблему.

Почему-то страница не получила всех данных, а без них она не работает.
Обратитесь в поддержку сервиса.

Вы вернётесь на предыдущую страницу через 5 секунд.
Вернуться назад

Школа миллиомметра как пользоваться

В практике радиолюбителя приходится встречаться с необходимостью измерения низкоомных сопротивлений (до 1 Ом). Решить эту задачу и предназначен простой миллиомметр. Этим устройством можно с достаточной для радиолюбителя точностью измерять сопротивления от 0,0001 до 1 Ома.
При измерении малых сопротивлений с помощью цифровых мультиметров последовательно с измеряемым сопротивлением, назовём его Rx, неизбежно включено сопротивление соединительных проводов, переходное сопротивление входных клемм или гнёзд, контактов переключателя и т.п. Это сопротивление (Rпр.) находится в пределах 0,1…0,4 Ом. Вследствие вышеуказанных причин, реально измеренное сопротивление будет больше Rx на некоторую величину (Rx+Rпр.). Погрешность может доходить до 50 % при измерении очень малых сопротивлений. Для больших сопротивлений эта ошибка невелика, и её можно не учитывать.
Из изложенного понятно, что надо исключить влияние соединительных проводов и т.п. на результат измерения очень малых сопротивлений. Существует метод измерения низкоомных сопротивлений по 4-зажимной схеме на постоянном токе. Применение данного метода полностью исключает влияние соединительных проводов на результат измерения малых сопротивлений. Этот метод используется в данном миллиомметре. Кратко рассмотрим суть метода измерения по 4-зажимной схеме.

Простой миллиомметр

Рисунок 1

На рис.1 (слева) приведена схема измерения сопротивления по 2-зажимной схеме. Красным цветом показан путь измерительного тока. Как видим, ток протекает и через измеряемый резистор и через сопротивление проводов (Rпр) мультиметра, что вносит погрешность в результат измерения. Сопротивление вольтметра не оказывает влияния на измерение Rx, так как обладает очень большим (до 10 МОм) внутренним сопротивлением Rвх. На рис.1 (справа) показана 4-зажимная схема измерения. Из схемы понятно, что сопротивление проводов не оказывает влияния на результат измерения, так как включено последовательно с очень большим внутренним сопротивлением вольтметра. Измерительный ток протекает только через резистор Rx.

Вот схема миллиомметра (рис.2).

Простой миллиомметр

Рисунок 2

Источником питания схемы является батарея с напряжением 9 В. Выключателем SB напряжение от батареи подаётся на микросхему стабилизатора напряжения типа 7806. Конденсатор С1 служит для подавления скачков напряжения. Резисторы R1, VR2 необходимы для установки выходного напряжения микросхемы в пределах 6 В. Потенциометром VR2 устанавливается точная величина выходного напряжения величиной 6В. Потенциометром VR3 устанавливается выходной ток, протекающий через измеряемый резистор Rx равный 100мА (0,1 А). Поскольку резистор VR3 имеет относительно большое сопротивление по сравнению с измеряемым Rx, то погрешность, возникающая при этом вследствие наличия сопротивлений Rx (от 1 мОм до 1 Ом ), будет оказывать влияние на величину тока 100мА в пределах не более 2%.

Конструкция миллиомметра
Внешний вид и вид на монтаж деталей миллиомметра показан на фото 1, 2 и 3. Монтаж деталей выполнен навесным способом, микросхема на радиатор не устанавливалась. В качестве потенциометров VR2, VR3 использованы многооборотные резисторы для более точной установки напряжения и тока. Корпус прибора пластмассовый, размеры 11*6*4 см. Клеммы К1 иК2 металлические. Выключатель питания типа МТ-1.

Простой миллиомметр

Фото 1

Простой миллиомметр

Фото 2

Простой миллиомметр

Фото 3

Подготовка к измерению сопротивления
Подсоединить щупы цифрового вольтметра к клеммам К1 и К2. Подать напряжение от источника питания на схему, включив выключатель SB. Потенциометром VR2 установить выходное напряжение величиной 6 В при неподключённом резисторе Rx. Далее, отключив SB, переключаем мультиметр на измерение тока (щупы остаются на прежнем месте), включаем SB и потенциометром VR3 устанавливаем величину выходного тока 0,1А.

Простой миллиомметр

Фото 4

Простой миллиомметр

Фото 5

Проведение измерений
Для начала возьмём несколько резисторов известной величины (0,1; 0,2; 0,5 Ом) и измерим их сопротивление, чтобы убедиться в работоспособности миллиомметра.

Простой миллиомметр

Фото 6

Не включая питание под клеммы К1 и К2, зажимаем выводы измеряемого сопротивления. Щупы цифрового вольтметра устанавливаем в гнёзда клемм К1 и К2, а предел измерения на отметку 200мВ. Включаем питание и считываем показания прибора.

Простой миллиомметр

Фото 7

Допустим, величина измеренного напряжения 22,3 мВ. Ток ранее был установлен 100мА. Делим напряжение на ток и получаем искомое сопротивление. В нашем случае: Rx=22,3: 100= 0,223 Ом. Конечно, принято делить вольты на амперы, чтобы получить Омы, но так удобнее, не надо переводить мВ и мА в вольты и амперы. Точно также измеряем другие эталонные резисторы. Но всё-таки вспомним, что 1 В-1000мВ; 100мВ-0,1В; 10мВ-0,01В; 1мВ-0,001В; 1А-1000мА; 100мА-0,1А. В моём мультиметре наименьший предел измерения — 200мВ, цена деления — 0,1 мВ. Входное сопротивление — около 10 МОм. То есть теоретически можно измерить сопротивление величиной 0,001 Ом (1мОм). Вольтметры с низким входным сопротивлением для наших измерений не годятся.
Итак, мы определили, что проведенные измерения дали реальный результат. Теперь переходим к измерению неизвестного сопротивления. В качестве неизвестных сопротивлений будем использовать шунты из разобранных авометров. При измерении сопротивления самого большого шунта падение напряжения составило 0,5 мВ, ток 100 мА.

Простой миллиомметр

Фото 8

Величина сопротивления шунта, рассчитанная по закону Ома, получилась 0,005 Ом. Сопротивление малого шунта, измеренного миллиомметром, равно 0,212 Ом (падение напряжения — 21,2 мВ).
Практическое применение миллиомметр может найти при подборе шунтов для зарядных устройств, измерении сопротивлений в оконечных каскадах усилителей низкой частоты и других устройств, где необходимо измерение малых сопротивлений (переходное сопротивление контактов выключателей, реле и др.).
Измерение низкоомных сопротивлений можно производить и при токах более 0,1 А. Для этого необходимо собрать стабилизатор тока на соответствующий ток. Схемы стабилизаторов приведены на рис.3.

Простой миллиомметр

Рисунок 3

Стабилизатор включается в схему вместо потенциометра VR3. Конечно, это повлечёт за собой установку микросхемы и транзистора на радиаторы соответствующего размера, а также к увеличению размеров прибора.
Сопротивления менее 1мОм (1000 мкОм) измеряют с помощью микроомметров. Измерительный ток может быть величиной до 150 А. Напряжение большой роли не играет.
Если необходимо изготовить шунт для зарядного устройства, а нихрома, константана, манганина нет, то можно воспользоваться шпилькой подходящего диаметра, как показано на фото 9.

Простой миллиомметр

Фото 9

Материал шпильки — сталь, бронза, медь и т.п. Передвигая один из контактов по шпильке добиваются нужного сопротивления шунта. Расчёт сопротивления шунта несложен. Будут вопросы — обсудим.

Щупы Кельвина и миллиомметр для среднего школьного возраста.

Какое-то время назад, после прочтения этого обзора я в очередной раз «загорелся» миллиомметром. В предложенной же в том обзоре конструкции мне не понравилось, что через измеряемый резистор протекает аж 100мА. Было решено сделать свой миллиомметр с… ну вы поняли. 😉

Один из узлов, а именно 5-разрядный панельный вольтметр я уже обозревал, а вот с зажимами Кельвина у меня изнчально вышел облом, о котором я тоже писал. Поэтому я не особо долго думая заказал щупы на бэнге — оно хоть готовое, за практически те же деньги.

Щупы поставляются в пакете с застежкой.

Общая длина каждого — 80см, вес каждого — аж 54 грамма. Как говорится, берешь в руку — маешь вещь.
Сам зажим отличается от того что был в прошлом обзоре только качеством — оно на голову выше. Черный чуть хуже, красный чуть лучше. но в целом впечатление благоприятное.


Провода достаточно большого сечения, с «экраном» из фольгированной плёночки. При использовании «бананов» подключать его некуда, так что висит в воздухе. Теперь о бананах. Бананы откровенно расстроили.

Магнитом даже не стал проверять, потому что так по хорошему — в мусорку их, а не для щупов Кельвина использовать. Значит, пружинная эта вот колбочка, самая важная часть, болтается на штыре. Всегда, даже вставленная в гнездо. В оригинале её распирает вдоль оси и упирает в края протички штыря, но это слишком точно. В более-менее адекватных китайских бананах она хоть изначально не так болтается, и при вставлении в гнездо её хоть как-то но распирает, и болтаться перестаёт. Тут — нифига. Как карандаш в стакане. Как временное решение я спаял в кучу на конце штырь и пружинку (видно на фото), но надо наверно всё же менять. Радует тот факт, что хоть пайка достаточно качественная — есть надежда что и на самих зажимах тоже прямыми руками паяли, а разбирать-то не хочется.

В общем и целом же — ну на четвёрочку. С тем что я купил сдуру прошлый раз — никакого сравнения. Наверно, если бы выбирал еще раз — купил бы снова. Ну и бананы сразу. 😉

Ну а теперь плавно переходим к тому, ради чего всё затевалось. Миллиомметр. Как я уже писал, мне не понравился большой ток через измеряемый элемент. Зато — конструкция максимально проста. Моя несколько сложнее, но с моей точки зрения — оно того стоит, ну и я вполне доволен результатом, ибо получил ну вот прям ровно то что хотел, хотя и не обошлось без косяков.

Первоначально я попробовал погуглить, и нашел либо совсем примитивные конструкции, либо нечто распальцованное, типа этого вот проекта: www.barbouri.com/2016/10/09/milliohm-meter-version-1-5/

Еще есть тема на радиокоте, которая к сожалению оборвалась без вменяемого результата.

Тем не менее, я кое-что почерпнул и из этой темы, и из того крутого проекта, да и какие-то безымянные картинки находил. Ну и в итоге «родил» нечто своё. Схемотехник из меня так себе — институт закончил давно и забыл уже больше чем знал. Да и микросхемы тогда были большие, а полевые транзисторы я видел только на картинках 😉

Итак, рожденная в творческих муках схема представляет из себя вот что:

Коротенечко по узлам: JP5 — для подключения выключателя, в итоге не использовал. JP1 — батарея, JP2 — выход питания вольтметра, JP3 источник тока для нагрузки, JP4 — соответственно вторая, измерительная, сторона зажимов. Подключать их нужно по номерам контактов, то есть первый щуп это 1 контакт JP3 и JP4, второй щуп соответственно 2 контакт.

Далее — стабилизатор питания. Забегая вперед скажу, что вся схема в рабочем режиме потребляет 37мА, без измеряемого элемента — соответственно 27мА, так что в принципе можно использовать «крону», особенно если предполагается редкое использование, как у меня. Стабилизатор, соответственно, можно хоть 78L05 взять, но у меня завалялся десяток 1117 с регулируемым выходом, которые я выпаял с материнских плат. Указанные значения сопротивлений в обвязке дают 5В выход. Если хочется использовать тот же 1117 с фиксированным напряжением 5В — вместо R2 ставим перемычку, R1 не запаиваем.

Теперь стабилизатор тока. Cобран на LM317L. Изначально хотел собрать на той же 1117, но она показала сильное изменение тока при изменении питающего напряжения, что меня крайне сильно и неприятно удивило — хорошо хоть сразу посмотрел. теоретически, для тока 10мА нужен резистор 120 Ом. Практически — зависит от экземпляра микросхемы и резистора, а значит может меняться в широких пределах =, что недопустимо. отсюда резистор на 100 Ом и 50 Ом подстроечник — многооборотистый. в итоге я вместо него запаял два резистора паралельно, кажется по 47 Ом.

Так как у нас устройство предполагает высокую точность, то и операционный усилитель нужно использовать не самый ширпотреб, а что-то малошумящее, прецизионное, с малым дрейфом нуля и желательно его подстройкой. По сусекам намёл OP07, ИМХО он сюда вполне хорошо подходит. НО. Он требует двухполярное питание. В том крутом проекте народ использовал максимовскую повышайку 5В->+-10В, я сделал попроще, и поставил банальный ICL7660, правда на всякий случай развязал по входу и выходу дросселями. Дросселя взял те что были — 100мкГн. Обвязка операционника обеспечивает усилиление в 100 раз, что позволит измерять сопротивления до 4 Ом. Подстроечник на 20кОм в его обвязке — для точной установки нуля.

Все резисторы ставил 1% точности размера 1206. Электролиты ставил какие были — 47мкФ на 16В. У меня их мешок.

Корпус взял кажется kradex z32, у меня в нем был собран аналог транзистортестера на PIC каком-то — собирал ради посмотреть, по факту транзистортестер заметно лучше, этот валялся в ящике — решил раскидать. К сожалению, отверстия для экрана и контактов были совершенно другие, поэтому пришлось частично сфрезеровывать и клеить сверху кусок пластика. Вроде получилось не очень плохо.

Вообще, если кто будет повторять, возможно есть смысл в переносе дисплея чуть ниже, и размещении гнёзд на верхней грани. Но корпуса крадекс отличаются крайне неудачным расположением соединительных стоек, так что я не уверен не будет ли мешать — как минимум от гнёзд будет зависеть. В моей конструкции не помешала бы подставка, чтобы устанавливать прибор под углом, а не ложить на стол плашмя.

Гнёзда для подключения опять же намёл по сусекам старые советские. Они толстые, тяжелые, точеные из бронзы наверно — металл желтого цвета, короче. Можно взять какие-нить простенькие гнёзда-бананы в магазине, но туда еще доехать нужно, а тут всё под рукой.

Далее делаем платку:

При сборке я рекомендую начинать со входного стабилизатора, дальше стабилизатор тока, потом преобразователь +5 в -5, ну и потом уже операционник. Каждый шаг контролировать, чтобы если где-то косяк — найти его сразу. Я у себя на плате нашел тонюсенький волосок припоя между +5 и землёй, причем уже после дросселя. Был сильно удивлён, но так как работал последовательно — то нашел сразу.

На фото припаяны «технологические» мамы, которые я потом откусил, и припаял провода минимальной длины. Естественно, так как я плату разводил «от балды», а корпус потом использовал какой нашел — то не обошлось без косяков. Плату пришлось немножко обработать на наждаке уже после сборки, ну и один конденсатор положить на бок. Настройка сводится к установке нуля подстроечником возле ОУ. Замыкаем в кучу всех входные клеммы и крутим чтобы появились какие-то цифры. Потом откручиваем обратно до появления нуля (не забываем, что панельный вольтметр измеряет только положительное напряжение, и 0 вполне может оказаться -4В. ). Можно измерить тестером напряжение на выходе ОУ.


Ну что ж, переходим к тестированию.

хм. какое-то большое расхождение. а! я ведь не скомпенсировал на тестере сопротивление щупов!

заметно лучше, не так ли?

3.9 Ом — практически максимальное измеряемое значение. реальный максимум 4.3 кажется.

ну а теперь то что меня удивило до глубины души. берем резистор 1 Ом 1%:

измерили. а теперь — перемещаем щупы с концов ножек максимально близко к самому резистору:

казалось бы — пара сантиметров, а какая разница в измерениях!

Подытоживая. Я результатом более чем доволен. Хотя, несомненно, на данный момент о точности никакой речи не идет. Нужно как минимум брать прецизионные резисторы и их измерять. Тем не менее, даже сейчас он работает по-моему вполне точно, скажем так — точнее чем обычный тестер, которым фиг заметишь разницу при измерениях в разных точках выводов элемента.

Щупы Кельвина, как я уже писал — на четвёрочку, брать можно, но и не идеал.

На всякий случай файлы eagle6. ВНИМАНИЕ! на плате есть косяк — я расположил выводные элементы на той же стороне что и smd. Для подстроечников и конденсаторов это непринципиально, а вот LM317 нужно будет развернуть, либо перерисовать плату. Собственно, тут рисовки-то на час.

ВСЕ элементы конструкции куплены за свои, за исключением стабилизатора, выпаянного с дохлой мамки и гнёзд, найденных уже не помню где.

Планирую купить +24 Добавить в избранное Обзор понравился +50 +84

  • 25 июля 2017, 14:23
  • автор: uncle_sem
  • просмотры: 13171

Миллиомметр

Для оценки качества проводов, кабелей (в том числе зарядных USB-кабелей), а также для точного определения состава и сечения жил силовых проводов можно использовать миллиомметр — прибор, измеряющий очень маленькие сопротивления.

Достаточно точный миллиомметр можно «сделать» из двух точных мультиметров и лабораторного источника питания, имеющего режим C.C. или обычного регулируемого бока питания и резистора.

Но гораздо удобней готовый миллиомметр, и я купил такой на Aliexpress за $22.

Сопротивление умеет измерять любой мультиметр, но когда сопротивление маленькое, начинает влиять сопротивление щупов и результат не может быть точным. Для точного измерения маленьких сопротивлений используется четырёхпроводная схема — с помощью двух проводов через измеряемый резистор пропускается фиксированный ток, через другие два провода измеряется напряжения на измеряемом резисторе. Такая схема позволяет полностью скомпенсировать падение напряжения в проводах — так как ток стабилизируется, падение напряжения на токовых проводах не имеет значения, а ток в проводах, через которые измеряется напряжение, микроскопический, поэтому падение напряжения на этих проводах фактически отсутствует.

Для удобства измерения малых сопротивлений используются клещи Кельвина, у которых к одной губке «крокодила» подключён токовый провод, а к другой — провод напряжения.

Безымянный миллиомметр с Али способен измерять сопротивление от 1 до 1999 миллиом (0.001 — 1.999 Ом). Он отображает целые миллиомы. Заявленная точность измерения 0.5%+3 знака (то есть ±3-13 мОм в зависимости от измеряемой величины). Измерительный ток — 80 мА.

Сверху на этикетке прибора написано просто «миллиомметр» по-китайски.

Питается прибор от литиевого аккумулятора 3.7 В (аккумулятор и холдер для него не входит в комплект). В инструкции написано, что нежелательно питать прибор от любого блока питания и батареек, так как это может повлиять на точность измерений.

Там же указано, что фактическая точность выше заявленной. Так и есть.

В комплекте инструкция, измерительные провода, провода питания, и ещё одни измерительные провода с клещами Кельвина. Судя по всему, у других продавцов этот же прибор продаётся без клещей Кельвина с одним комплектом измерительных проводов.

Инструкция только на китайском, но в наше время это не проблема — приложение Google Переводчик на смартфоне отлично переводит текст, сфотографировав лист с иероглифами.

Задняя крышка прибора снимается, под ней можно увидеть многооборотный подстроечный резистор калибровки.

Для калибровки нужен резистор с точно известным сопротивлением около 1 Ом.

Для проверки точности прибора я измерил с помощью него резистор Burster 0.1 Ом с классом точности 0.002%. Согласно паспорту, сопротивление этого экземпляра 99.9927 мОм.

Миллиомметр показал 101 мОм, ошибившись всего на 1 мОм.

Для проверки точности прибора во всём диапазоне я использовал два точных мультиметра и лабораторный источник питания, на котором выставил ток 100 мА.

Миллиомметр показал, что сопротивление измерительного провода с силиконовой изоляцией составляет 17 мОм. Напряжение на проводе 1.74 мВ, ток 99.9 мА: 0.00174/0.0999=0.0174 Ом или 17.4 мОм.

Резистор 0.39 Ом ±10%. 38.8 мВ, 99.9 мА — 388.3 мОм.

Прибор показывает 387 мОм.

Я измерил шесть резисторов и проводов. Первое число — расчётное значение сопротивления в миллиомах, полученное из деления напряжения, показанного одним мультиметром, на ток, показанный другим. Второе число — показание миллиомметра.

17,4 17
105.1 104
387,9 387
747,7 748
1007,0 1007
1233,2 1232

Во всех случаях ошибка составила не более одного миллиома. Отличный результат!

Прибор не очень дешёвый и нужен он далеко не всем. Но я его буду использовать для проверки качества зарядных кабелей, проверки качества проводов (в том числе силовых), проверки сопротивления различных контактов и мне он точно пригодится.

© 2018, Алексей Надёжин

Планирую купить +12 Добавить в избранное Обзор понравился +58 +81

  • 18 апреля 2018, 10:05
  • автор: Ammo1
  • просмотры: 12408

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *