как повысить напряжение в сети до заветных 220 вольт
Пришла зима, а вместе с ней и новые проблемы. Похолодало, по ночам за -30 градусов, солярка в баке моего грузовика превратилась в манную кашу(, но это полбеды, основная проблема с электричеством, которое проседает при подключении калорифера и подогрева грузовика, а он, подогрев, два киловатта просит, ещё микроволновка и эл. чайник на это дело смотрят.
Жизнь у меня и без того не сладкая, а тут ещё эти проблемы добавляются, да ещё транспортный налог на семнадцать тыщь рубликов прислали, вообще засада.
Ну с соляркой всё просто — слил кашу, залил зимнюю, а с электричеством пришлось повозиться.
Так как при подключении двух киловатт нагрузки в сеть напряжение проседает около пятидесяти вольт, понятно что где то или контакт хреновый, или ноль отгнил или отгорел. Прошёлся по своему хозяйству и даже немного дальше, никакого «криминала» не нашёл, значит где то на линии, а может на подстанции проблема.
Времени на обращение в эл.сети нет, через день на работу ехать, на улице за тридцать, подогрев еле-еле греет, калорифер тоже, денег на стабилизатор напряжения нет … Стоп! Стабилизатор!
Сделать настоящий стабилизатор своими силами конечно можно, но времени и денег на это уйдёт прилично. А что можно из простого? — гугл в помощь!
Простейшая схемка, даже схемкой не назовёшь, потому что нужен то всего только практически любой, обычный понижающий трансформатор, чем больше мощность тем лучше.
Порылся в своей голове на предмет трансформаторов в моём хозяйстве, вспомнил что тесть отдал мне старый слабенький сварочник, переделанный в зарядное устройство, в котором накрылся диодный мост.
Трансформатор в нём добрый, мощность 1,85 кВа, для сварки слабоват, а мне самый раз даже с избытком.
Если учесть что даже 100 Ваттный трансформатор в этой схеме может работать с 500 ваттной нагрузкой, то мой легко выдержит шесть киловатт, если розетка сдюжит)
В общем вытащил диодный мост, нерабочий амперметр, лишние провода, померил какие есть напряжения на вторичной обмотке, остановился на обмотке с 45-ю вольтами на выходе и подключил по этой схеме, получился повышающий автотрансформатор, т.е. к сетевому напряжению добавилось напряжение вторичной обмотки в 45 вольт.
Добавил ещё выключатель трансформатора на случай если напряжение в сети будет нормальным, чтобы пропускал напряжение без повышения.
Вместо нерабочего амперметра поставил розетку,
закрыл боковины корпуса
и поставил в уголок, теперь напряжение со включённой нагрузкой вместо 170-180 вольт равно 215-225 вольтам, что есть отлично!
Если соберёте схемку, а напряжение будет меньше чем в сети, то нужно поменять подключение любой из обмоток.
Конечно на этом стабилизаторе нет никаких защит и автоматического управления, но со своей задачей он справляется на отлично, немного гудит, да и хрен с ним, зато мне тепло и подогрев на машине работает как надо, может со временем сделаю какую ни будь автоматику от случайного перенапряжения, а пока поживёт так.
Как сделать трансформатор своими руками?
Несмотря на многообразие электрооборудования на рынке, далеко не во всех ситуациях можно найти подходящий преобразовательный агрегат для решения конкретной задачи. Поэтому многие обыватели пытаются изготовить трансформатор своими руками для получения определенных параметров работы. Стоит отметить, что намотать трансформатор может каждый, даже без специализированного оборудования и особых навыков, но этот процесс довольно трудоемкий и кропотливый. Поэтому изначально вам придется определиться с типом и характеристиками прибора.
Что понадобится для сборки?
Все преобразователи подразделяются на две основные категории – повышающие и понижающие трансформаторы.
В зависимости от предназначения, конструктивных особенностей и места установки их можно разделить на такие категории:
- Силовые трансформаторы;
- Измерительные трансформаторы;
- Импульсные трансформаторы;
- Сварочные трансформаторы;
Практически каждое из вышеперечисленных устройств вы можете воссоздать в домашних условиях. Наиболее простым вариантом является перемотка трансформатора из заводского изделия, так как он уже содержит необходимые элементы. Главное, чтобы первичная обмотка подходила по номиналу питающего напряжения и мощности. Куда хуже, если перематывать нужно обе обмотки, к примеру, если и первичная, и вторичная обмотка пробиты или получили механическое повреждение.
Для изготовления трансформатора своими руками вам понадобятся:
- Магнитопровод – служит в качестве проводника магнитного потока, лучше взять из старого трансформатора, так как он изготовлен из электротехнической стали и обеспечивает необходимые параметры работы, характеризуется малыми потерями в железе.
- Провода нужного вам сечения в лаковой, полимерной или стеклотканевой изоляции. Чем тоньше этот слой, тем плотнее прилягут витки к каркасу и друг к другу.
- Каркас – служит в качестве основания для обмоток трансформатора, устанавливает габариты по ширине. Можно взять из старого трансформатора, а можно изготовить своими руками. Материалом для каркаса может послужить электротехнический картон, гетинакс или текстолит, важно чтобы он не занимал много места в зазоре между сердечником и проводом.
- Изоляция – предназначена для электрического отделения токоведущих элементов друг от друга и от конструктивных элементов трансформатора. В промышленном производстве используется лакотканевая лента, фторопласт, парафиновая пропитка, но при самостоятельном изготовлении подойдет любой имеющийся у вас материал, главное, чтобы его диэлектрической прочности хватало для напряжения сети.
- Намоточный станок – позволяет упростить процесс и обеспечить постоянное натяжение. Можно изготовить своими руками из ручной дрели или по принципу вертела на двух шарнирах. Важно, чтобы изготовленный станок имел как можно меньший люфт.
Помимо этого вам могут пригодиться: молоток с деревянной пресс-планкой, паяльник для соединения проводов, ножницы, пассатижи. Но перед изготовлением, обязательно рассчитайте параметры трансформатора.
Расчеты
Наиболее сложный вариант, если вы будете изготавливать трансформатор своими руками с нуля. В таком случае расчет электрической машины производится в зависимости от выходной мощности. Исходя из этого параметра, рассчитывается мощность первичной обмотки. Если вы используете заводской сердечник, то можно считать эти величины одинаковыми, если вы соберете его самостоятельно, то P2 = 0,9 * P1
Это приблизительный расчет с учетом потерь в сердечнике. В зависимости от качества шихтовки своими руками, разница мощностей может находиться в пределах от 5 до 20%.
В зависимости от мощности первички определяется сечение магнитопровода, которое вычисляется по формуле: S = √P1
Следует отметить, что мощность для вычислений берется в Ваттах, а размеры сердечника получаем в квадратных сантиметрах.
Далее определяется коэффициент передачи электромагнитной энергии: k = f/S,
Где k – коэффициент передачи, f – частота сетевого напряжения переменного тока, S – площадь сечения магнитопровода.
Исходя из полученного коэффициента, определяется число витков в обмотках по величине входных и выходных напряжений: N1 = k*U1, N2 = k*U2
Это приблизительные вычисления, предназначенные для бытового применения радиолюбителями. Заводские трансформаторы имеют более сложную процедуру расчета, которая производится по справочникам и зависит от их типа и назначения (силовые, измерительные, трехобмоточные, тороидальные устройства и т.д.)
Далее рассчитывается сила тока в первичной обмотке трансформатора: I1 = P1 / U1
Соответственно, ток, протекающий по вторичной обмотке трансформатора, вычисляется по формуле: : I2 = P2 / U2
Исходя из величины тока в каждой обмотке, выбирается сечение жилы. Но заметьте, что проводник в обмотке значительно хуже охлаждается, поэтому запас сечения делается на 20 – 30%. Проще выполнять данную работу медными проводами, но это требование не критично.
Таблица: выбор сечения, в зависимости от протекающего тока
Медный проводник | Алюминиевый проводник | ||
Сечение жил, мм 2 | Ток, А | Сечение жил. мм 2 | Ток, А |
0,5 | 11 | — | — |
0,75 | 15 | — | — |
1 | 17 | — | — |
1.5 | 19 | 2,5 | 22 |
2.5 | 27 | 4 | 28 |
4 | 38 | 6 | 36 |
6 | 46 | 10 | 50 |
10 | 70 | 16 | 60 |
16 | 80 | 25 | 85 |
25 | 115 | 35 | 100 |
35 | 135 | 50 | 135 |
50 | 175 | 70 | 165 |
70 | 215 | 95 | 200 |
95 | 265 | 120 | 230 |
120 | 300 |
Сборка повышающего трансформатора
Особенностью повышающего трансформатора является большее сечение жил первичной обмотки трансформатора по отношению к вторичной. Ярким примером может служить любой агрегат, повышающий напряжение питания 220 Вольт до 400, 500, 1000 В и т.д., соответственно класс изоляции трансформатора выбирается по номиналу вторичной обмотки, как в сетевых трансформаторах.
Заметьте, что проводник большого сечения не получится намотать самодельным станком, поскольку вы не сможете выдать достаточное усилие. Определить это довольно просто – если первые витки свободно двигаются по каркасу катушки или хуже того, вы видите явный зазор между жилой и каркасом, переходите к ручной намотке.
Для сборки вам потребуется выполнить такую последовательность действий:
- Соберите основание из диэлектрического материала, для этого можно вырезать его по лекалу из картона. Сборка каркаса производится внахлест при помощи клея.
Если у вас имеется готовый образец, можете переходить к следующему этапу.
- Сделайте отверстия в щеке катушки под выводы в электрическую сеть и к потребителю. Проденьте в них выводы.
- Уложите первый слой изоляции под первичку.
- Намотайте первичную обмотку трансформатора – если позволяет толщина, используйте станок, в противном случае, сделайте это руками. При намотке каждые 4 -5 витков проверяйте жесткость фиксации и плотность прилегания.
В случае наличия видимых зазоров рекомендуется придавливать витки деревянной пресс-плашкой или прибивать их через плашку молотком.
- Посчитайте количество витков, оно должно соответствовать расчетному, выводы проденьте в отверстия. Уложите слой изоляции на первичку.
- После слоя изоляции намотайте вторичку, так как здесь будет использоваться более тонкий провод, эту процедуру проще выполнять на станке.
Периодически проверяйте плотность витков и их фиксацию на стержне. Хорошая фиксация не должна прогибаться и деформироваться при нажатии пальцами.
- Если все витки не помещаются в один слой, их выкладывают в несколько, тогда важно соблюдать одно и то же количество витков в каждом из них. Слои перекладываются диэлектрическим материалом, заметьте, что толщина изоляции не должна существенно влиять на общие габариты катушек.
- Выведете концы вторичной обмотки на щечку каркаса.
- Поместите магнитопровод в окно каркаса, сборка сердечника выполняется поочередно с каждой стороны, иначе потери окажутся слишком большими. Затем сердечник распирается для плотности фиксации.
Мощные трансформаторы на большой номинал напряжения дополнительно пропитывается парафиновой изоляцией. Такая процедура приводит к повышению емкостных потерь, но создает дополнительную защиту от электрического тока.
Сборка понижающего трансформатора
Понижающий трансформатор будет отличаться большим количеством витков на первичке. В быту их можно часто встретить в блоках питания, сварочных аппаратах и прочем оборудовании. Правда, в импульсных блоках используется другая технология, поэтому ремонт таких устройств производится без трансформаторов.
Так как изготовление сварочного трансформатора своими руками довольно актуально для домашних самоделок, рассмотрим на примере этот вариант. Требования к процессу сборки соответствует предыдущему. Отличительной особенностью такого агрегата является большое сечение провода во вторичной обмотке, так как сварочный ток может достигать сотен ампер.
Процесс изготовления заключается в следующем:
- Возьмите старое или изготовьте основание для катушки.
- Зафиксируйте на трансформаторном каркасе слой изоляции.
- Намотайте первичную обмотку с попеременной изоляцией слоев.
- Заизолируйте первичку и намотайте вторичную обмотку, так как большой диаметр проводов не позволит сделать это вручную, используйте слесарный инструмент.
- Зафиксируйте выводы обеих катушек.
- Установите пластины сердечника.
Испытание
Для проверки работоспособности П-образных или тороидальных трансформаторов в домашних условиях можно воспользоваться обычным мультиметром. Для этого переведите измерительный прибор в режим прозвона и проверьте целостность каждой из обмоток. Затем проверьте изоляцию между каждой из обмоток и магнитопроводом и сопротивление между обеими обмотками. Это наиболее простой комплекс испытаний, который даст общее представление об исправности самодельного агрегата.
Для проверки отсутствия короткозамкнутых витков используется лампа, включающаяся последовательно к первичной обмотке.
Помимо этого электрические машины испытываются в режиме холостого хода и короткого замыкания. Такие проверки показывают, насколько качественно собран преобразователь, но выполнять их в домашних условиях не обязательно.
Список использованной литературы
- Подъяпольский А.Н. «Как намотать трансформатор» 1953
- Кислицын А.Л. «Трансформаторы» 2001
- Родштейн Л.П. «Электрические аппараты» 1989
- Бартош А.И. «Электрика для любознательных» 2019
Что такое напряжение, как понизить и повысить напряжение
Напряжение и сила тока — две основных величины в электричестве. Кроме них выделяют и ряд других величин: заряд, напряженность магнитного поля, напряженность электрического поля, магнитная индукция и другие. Практикующему электрику или электронщику в повседневной работе чаще всего приходится оперировать именно напряжением и током — Вольтами и Амперами. В этой статье мы расскажем именно о напряжении, о том, что это такое и как с ним работать.
Определение физической величины
Напряжение это разность потенциалов между двумя точками, характеризует выполненную работу электрического поля по переносу заряда из первой точки во вторую. Измеряется напряжение в Вольтах. Значит, напряжение может присутствовать только между двумя точками пространства. Следовательно, измерить напряжение в одной точке нельзя.
Потенциал обозначается буквой «Ф», а напряжение буквой «U». Если выразить через разность потенциалов, напряжение равно:
Если выразить через работу, тогда:
где A — работа, q — заряд.
Измерение напряжения
Напряжение измеряется с помощью вольтметра. Щупы вольтметра подключают на две точки напряжение, между которыми нас интересует, или на выводы детали, падение напряжения на которой мы хотим измерить. При этом любое подключение к схеме может влиять на её работу. Это значит, что при добавлении параллельно элементу какой-либо нагрузки ток в цепи изменить и напряжение на элементе измениться по закону Ома.
Вывод:
Вольтметр должен обладать максимально высоким входным сопротивлением, чтобы при его подключении итоговое сопротивление на измеряемом участке оставалось практически неизменным. Сопротивление вольтметра должно стремиться к бесконечности, и чем оно больше, тем большая достоверность показаний.
На точность измерений (класс точности) влияет целый ряд параметров. Для стрелочных приборов – это и точность градуировки измерительной шкалы, конструктивные особенности подвеса стрелки, качество и целостность электромагнитной катушки, состояние возвратных пружин, точность подбора шунта и прочее.
Для цифровых приборов — в основном точность подбора резисторов в измерительном делителе напряжения, разрядность АЦП (чем больше, тем точнее), качество измерительных щупов.
Для измерения постоянного напряжения с помощью цифрового прибора (например, мультиметра), как правило, не имеет значения правильность подключения щупов к измеряемой цепи. Если вы подключите положительный щуп к точке с более отрицательным потенциалом, чем у точки, к которой подключен отрицательный щуп — то на дисплее перед результатом измерения появится знак «–».
А вот если вы меряете стрелочным прибором нужно быть внимательным, При неправильном подсоединении щупов стрелка начнет отклоняться в сторону нуля, упрется в ограничитель. При измерении напряжений близких к пределу измерений или больше она может заклинить или погнуться, после чего о точности и дальнейшей работе этого прибора говорить не приходится.
Для большинства измерений в быту и в электронике на любительском уровне достаточно и вольтметра встроенного в мультиметры типа DT-830 и подобных.
Чем больше измеряемые значения — тем ниже требования к точности, ведь если вы измеряете доли вольта и у вас погрешность в 0.1В — это существенно исказит картину, а если вы измеряете сотни или тысяч вольт, то погрешность и в 5 вольт не сыграет существенной роли.
Что делать если напряжение не подходит для питания нагрузки
Для питания каждого конкретного устройства или аппарата нужно подать напряжение определенной величины, но случается, так что имеющийся у вас источник питания не подходит и выдает низкое или слишком высокое напряжение. Решается эта проблема разными способами, в зависимости от требуемой мощности, напряжения и силы тока.
Как понизить напряжение сопротивлением?
Сопротивление ограничивает ток и при его протекании падает напряжение на сопротивление (токоограничивающий резистор). Такой способ позволяет понизить напряжение для питания маломощных устройств с токами потребления в десятки, максимум сотни миллиампер.
Примером такого питания можно выделить включение светодиода в сеть постоянного тока 12 (например, бортовая сеть автомобиля до 14.7 Вольт). Тогда, если светодиод рассчитан на питание от 3.3 В, током в 20 мА, нужен резистор R:
R=(14.7-3.3)/0.02)= 570 Ом
Но резисторы отличаются по максимальной рассеиваемой мощности:
Ближайший по номиналу в большую сторону — резистор на 0.25 Вт.
Именно рассеиваемая мощность и накладывает ограничение на такой способ питания, обычно мощность резисторов не превышает 5-10 Вт. Получается, что если нужно погасить большое напряжение или запитать таким образом нагрузку мощнее, придется ставить несколько резисторов т.к. мощности одного не хватит и ее можно распределить между несколькими.
Способ снижения напряжения резистором работает и в цепях постоянного тока и в цепях переменного тока.
Недостаток — выходное напряжение ничем нестабилизировано и при увеличении и снижении тока оно изменяется пропорционально номиналу резистора.
Как понизить переменное напряжение дросселем или конденсатором?
Если речь вести только о переменном токе, то можно использовать реактивное сопротивление. Реактивное сопротивление есть только в цепях переменного тока, это связно с особенностями накопления энергии в конденсаторах и катушках индуктивности и законами коммутации.
Дроссель и конденсатор в переменном токе могут быть использованы в роли балластного сопротивления.
Реактивное сопротивление дросселя (и любого индуктивного элемента) зависит от частоты переменного тока (для бытовой электросети 50 Гц) и индуктивности, оно рассчитывается по формуле:
где ω – угловая частота в рад/с, L-индуктивность, 2пи – необходимо для перевода угловой частоты в обычную, f – частота напряжения в Гц.
Реактивное сопротивление конденсатора зависит от его емкости (чем меньше С, тем больше сопротивление) и частоты тока в цепи (чем больше частота, тем меньше сопротивление). Его можно рассчитать так:
Когда переменный ток проходит через проводник, вокруг проводника образуется магнитное поле. Если проводник намотан на катушку, то магнитное поле увеличивается. Если в цепи образуется значительное магнитное поле, то в этой цепи возникает противодействие потоку тока, что называется индуктивным реактивным сопротивлением.
Пример использования индуктивного сопротивления — это питание люминесцентных ламп освещения, ДРЛ ламп и ДНаТ. Дроссель ограничивает ток через лампу, в ЛЛ и ДНаТ лампах он используется в паре со стартером или импульсным зажигающем устройством (пусковое реле) для формирования всплеска высокого напряжения включающего лампу. Это связано с природой и принципом работы таких светильников.
А конденсатор используют для питания маломощных устройств, его устанавливают последовательно с питаемой цепью. Такой блок питания называется «бестрансфоматорный блок питания с балластным (гасящим) конденсатором».
Очень часто встречают в качестве ограничителя тока заряда аккумуляторов (например, свинцовых) в носимых фонарях и маломощных радиоприемниках. Недостатки такой схемы очевидны — нет контроля уровня заряда аккумулятора, их выкипание, недозаряд, нестабильность напряжения.
Как понизить и стабилизировать напряжение постоянного тока
Чтобы добиться стабильного выходного напряжения можно использовать параметрические и линейные стабилизаторы. Часто их делают на отечественных микросхемах типа КРЕН или зарубежных типа L78xx, L79xx.
Линейный преобразователь LM317 позволяет стабилизировать любое значение напряжения, он регулируемый до 37В, вы можете сделать простейший регулируемый блок питания на его основе.
Если нужно незначительно снизить напряжение и стабилизировать его описанные ИМС не подойдут. Чтобы они работали должна быть разница порядка 2В и более. Для этого созданы LDO(low dropout)-стабилизаторы. Их отличие заключается в том, что для стабилизации выходного напряжение нужно, чтобы входное его превышало на величину от 1В. Пример такого стабилизатора AMS1117, выпускается в версиях от 1.2 до 5В, чаще всего используют версии на 5 и 3.3В, например в платах Arduino и многом другом.
Конструкция всех вышеописанных линейных понижающих стабилизаторов последовательного типа имеет существенный недостаток – низкий КПД. Чем больше разница между входным и выходным напряжением – тем он ниже. Он просто «сжигает» лишнее напряжение, переводя его в тепло, а потери энергии равны:
Компания AMTECH выпускает ШИМ аналоги преобразователей типа L78xx, они работают по принципу широтно-импульсной модуляции и их КПД равен всегда более 90%.
Они просто включают и выключают напряжение с частотой до 300 кГц (пульсации минимальны). А действующее напряжение стабилизируется на нужном уровне. А схема включения аналогичная линейным аналогам.
Как повысить постоянное напряжение?
Для повышения напряжения производят импульсные преобразователи напряжения. Они могут быть включены и по схеме повышения (boost), и понижения (buck), и по повышающе-понижающей (buck-boost) схеме. Давайте рассмотрим несколько представителей:
1. Плата на базе микросхемы XL6009
2. Плата на базе LM2577, работает на повышение и понижение выходного напряжения.
3. Плата преобразователь на FP6291, подходит для сборки 5 V источника питания, например powerbank. С помощью корректировке номиналов резисторов может перестраиваться на другие напряжения, как и любые другие подобные преобразователь – нужно корректировать цепи обратной связи.
4. Плата на базе MT3608
Здесь всё подписано на плате – площадки для пайки входного – IN и выходного – OUT напряжения. Платы могут иметь регулировку выходного напряжения, а в некоторых случая и ограничения тока, что позволяет сделать простой и эффективный лабораторный блок питания. Большинство преобразователей, как линейных, так и импульсных имеют защиту от КЗ.
Как повысить переменное напряжение?
Для корректировки переменного напряжения используют два основных способа:
Автотрансформатор – это дроссель с одной обмоткой. Обмотка имеет отвод от определенного количества витков, так подключаясь между одним из концов обмотки и отводом, на концах обмотки вы получаете повышенное напряжение во столько раз, во сколько соотносится общее количество витков и количество витков до отвода.
Промышленностью выпускаются ЛАТРы – лабораторные автотрансформаторы, специальные электромеханические устройства для регулировки напряжения. Очень широко применение они нашли в разработке электронных устройств и ремонте источников питания. Регулировка достигается за счет скользящего щеточного контакта, к которому подключается питаемое устройство.
Недостатком таких устройств является отсутствие гальванической развязки. Это значит, что на выходных клеммах может запросто оказаться высокое напряжение, отсюда опасность поражения электрическим током.
Трансформатор – это классический способ изменения величины напряжения. Здесь есть гальваническая развязка от сети, что повышает безопасность таких установок. Величина напряжения на вторичной обмотке зависит от напряжений на первичной обмотки и коэффициента трансформации.
Отдельный вид – это импульсные трансформаторы. Они работают на высоких частотах в десятки и сотни кГц. Используются в подавляющем большинстве импульсных блоках питания, например:
- Зарядное устройство вашего смартфона;
- Блок питания ноутбука;
- Блок питания компьютера.
За счет работы на большой частоте снижаются массогабаритные показатели, они в разы меньше чем у сетевых (50/60 Гц) трансформаторов, количество витков на обмотках и, как следствие, цена. Переход на импульсные блоки питания позволил уменьшить габариты и вес всей современной электроники, снизить её потребление за счет увеличения кпд (в импульсных схемах 70-98%).
В магазинах часто встречаются электронные траснформаторы, на их вход подаётся сетевое напряжение 220В, а на выходе например 12 В переменное высокочастотное, для использования в нагрузке которая питается от постоянного тока нужно дополнительно устанавливать на выход диодный мост из высокоскоростных диодов.
Внутри находится импульсный трансформатор, транзисторные ключи, драйвер, или автогенераторная схема, как изображена ниже.
Достоинства – простота схемы, гальваническая развязка и малые размеры.
Недостатки – большинство моделей, что встречаются в продаже, имеют обратную связь по току, это значит что без нагрузки с минимальной мощностью (указано в спецификациях конкретного прибора) он просто не включится. Отдельные экземпляры оборудованы уже ОС по напряжению и работают на холостом ходу без проблем.
Используются чаще всего для питания 12В галогенных ламп, например точечные светильники подвесного потолка.
Заключение
Мы рассмотрели базовые сведения о напряжении, его измерении, а также регулировки. Современная элементная база и ассортимент готовых блоков и преобразователей позволяет реализовывать любые источники питания с необходимыми выходными характеристиками. Подробнее о каждом из способов можно написать отдельную статью, в пределах этой я постарался уместить базовые сведения, необходимые для быстрого подбора удобного для вас решения.
- Концевые выключатели — особенности конструкций и примеры использования
- Как научится читать электронные схемы
- Особенности современных магнитных пускателей и их применение
Надеюсь, что эта статья была для вас полезной. Смотрите также другие статьи в категории Электрическая энергия в быту и на производстве » В помощь начинающим электрикам
Подписывайтесь на наш канал в Telegram: Домашняя электрика
Поделитесь этой статьей с друзьями:
Каким Образом Можно Поднять Сетевое Напряжение?
Вы можете написать сейчас и зарегистрироваться позже. Если у вас есть аккаунт, авторизуйтесь, чтобы опубликовать от имени своего аккаунта.
Примечание: Ваш пост будет проверен модератором, прежде чем станет видимым.
Поделиться
Последние посетители 0 пользователей онлайн
- Ни одного зарегистрированного пользователя не просматривает данную страницу
Сообщения
Ощущение что рисовали плуту в Спринте из библиотек найденных по знакомым, больно все в разнобой. Поэтому предположу что смысловой нагрузки это не несет.
учите мат часть
Ага. медь. только покрытая чем то хитрым с палладием и серебром..
Не сделана. Недоделана, ещё надо несколько шагов , чтобы решить задачу@Кандрат Кандратыч .
Она уже давно сделана.
Кнопка с фиксацией это кнопка с фиксацией. Он что дребезжит 5 минут? Если не лень выложи видео работы твоей платы.