1.3. Правила (законы) Кирхгофа
Первый закон: «Алгебраическая сумма токов, сходящихся в узле, равна нулю»:
При решении задач на основании первого закона Кирхгофа составляют (n -1) уравнений, где n-число узлов.
Второй закон-«Алгебраическая сумма падений напряжений, на отдельных участках замкнутой цепи (замкнутого независимого контура), равна алгебраической сумме ЭДС, действующих в них «:
На основании второго закона Кирхгофа составляют (m-1) уравнение, где m-число независимых контуров, т.е. таких, которые содержат хотя бы один элемент не входящий в предыдущие контуры.
1.3.1.Примеры решения задач
1.3.1.1. Задача. Электрическая цепь состоит из двух гальванических элементов, трех сопротивлений и гальванометра. В этой цепи r1=100 Ом, r2=50 Ом , r3=20 Ом, E1=2 В.
Гальванометр регистрирует ток I3=50 мА, идущий в направлении, указанном стрелкой. Определить ЭДС второго элемента. Сопротивлением гальванометра и внутренними сопротивлениями элементов пренебречь.
Указания. Применяя законы Кирхгофа, следует соблюдать следующие правила:
1.Перед составлением уравнений произвольно выбрать и на чертеже: а) направления токов (если они не заданы по условию задачи) во всех сопротивлениях, входящих в цепь; б) направление обхода контуров.
2. При составлении уравнений по первому закону Кирхгофа принято считать токи, подходящие к узлу, положительными, а токи, выходящие из узла – отрицательными.
Число уравнений, составляемых по первому закону Кирхгофа, должно быть на единицу меньше числа узлов, содержащихся в цепи.
3. При составлении уравнений по второму закону Кирхгофа принято считать: а) падение напряжения на участке цепи (т.е. произведение Ir) входит в уравнение со знаком плюс, если направление тока в данном участке совпадает с выбранным направлением обхода контура; в противном случае произведение Ir входит в уравнение со знаком минус; б) ЭДС входит в уравнение со знаком плюс, если она повышает потенциал в направлении обхода контура, т.е. если при обходе контура приходится идти от минуса к плюсу внутри источника тока; в противном случае ЭДС входит в уравнение со знаком минус.
Число независимых уравнений, которые могут быть составлены по второму закону Кирхгофа, должно быть меньше числа замкнутых контуров, имеющихся в цепи. Для составления уравнений первый контур можно выбирать произвольно. Все последующие контуры следует выбирать таким образом, чтобы в каждый новый контур входила хотя бы одна ветвь цепи, не участвовавшая ни в одном из ранее использованных контуров. Если при решении уравнений, составленных указанным выше способом, получены отрицательные значения силы тока или сопротивления, то это означает, что ток через данное сопротивление в действительности течет в направлении, противоположном произвольно выбранному.
Решение. Выберем направления токов, как они указаны на рисунке, и условимся обходить контуры по часовой стрелке.
По первому закону Кирхгофа для узла F имеем:
По второму закону Кирхгофа имеем: для контура ABCDF:
или после умножения обеих частей равенства на (-1):
для контура AFGHA:
После подстановки известных числовых значений в формулы (1), (2) и (3), получим:
Перенеся в этих уравнениях неизвестные величины в левые части, а известные – в правые, будем иметь систему уравнений:
Эту систему уравнений с тремя неизвестными можно решить обычными приемами алгебры, либо методами определителей.
Решая систему уравнений, будем иметь
7.2. Порядок решения задач на законы Кирхгофа
1. Нарисовать схему цепи. На рисунке выбрать и показать направления токов на всех участках цепи, при этом надо учесть, что в узел токи не могут только входить или только выходить из узла. Это следует из первого закона Кирхгофа.
2. Выбрать замкнутые контуры обхода для применения второго закона Кирхгофа. Показать на рисунке направление обхода по контуру. Контуров может быть несколько. Число независимых уравнений, которые можно составить по второму закону Кирхгофа, меньше чем число контуров. Чтобы составить необходимое число независимых уравнений надо придерживаться следующего правила: Выбирать контуры так, чтобы в каждый новый контур входил хотя бы один участок цепи, которого бы не было нив одном ранее рассмотренных контуров.
3. Используя первый закон Кирхгофа можно написать ( n – 1) уравнений, где n— число узлов в рассматриваемой цепи.
4. Воспользоваться вторым законом Кирхгофа и записать такое число уравнений, чтобы число уравнений, составленных по первому и второму законам Кирхгофа, равнялось числу неизвестных величин в задаче. При этом надо учитывать следующее правило знаков: падение напряжения на каждом участке записывается со знаком «+», если направление обхода по этому участку совпадает с направлением тока на нем. И наоборот, если обход совершался по этому сопротивлению обратно направлению тока, то ставится знак « – ».
ЭДС записывается со знаком «+» в том случае, когда направление обхода совпадает с направлением поля сторонних сил в источнике тока и наоборот.
Поле сторонних сил внутри источника всегда направлено от отрицательного полюса к положительному.
5. Решить полученную систему уравнений и найти искомые величины.
В результате решения полученной системы уравнений определяемые величины могут получаться отрицательными. Отрицательное значение тока указывает на то, что фактическое направление тока на данном участке цепи обратно тому, которое мы выбрали.
7.3. Примеры решения задач на законы Кирхгофа
Два элемента с одинаковыми ЭДС e1 = e2 = 2В и внутренними сопротивлениями r1 = 1 Ом, r2 = 2 Ом замкнуты на внешнее сопротивление R. Через первый элемент течет ток I1 = 1 А. Найдите сопротивление R, ток I2, текущий через второй элемент, и ток I, текущий через сопротивление R. Схема соединения показана на рисунке.
Дано:
e 1 = e2 = 2 D;
1.Выберем направления токов на всех участках цепи так, как показано на рисунке. Видим, что в узлах 1 и 2 есть входящие и есть выходящие токи, значит, направления токов выбраны разумно.
2. Выберем контуры обхода и покажем направления обхода по ним. Контуров выбрали два и нарисовали направления обхода по ним.
3. Составим уравнение, используя первый закон Кирхгофа. Узлов два, поэтому можно составить только одно уравнение, например для первого узла:
I1 + I2 — I = 0.
Токи, входящие в узел, пишем со знаком «+», а выходящие с знаком»–». Уравнение для второго узла будет тождественно первому.
4. Применим второй закон Кирхгофа для первого контура обхода. Падение напряжения на всех участках этого контура пишем со знаком «+», т.к. направление обхода на всех участках совпадает с направлением тока на этих участках
В этот контур входит только один источник тока e1, и направление обхода по контуру совпадает с направлением поля сторонних сил, т.к. силы этого поля направлены от отрицательного полюса к положительному, т.е. вниз.
Для второго контура, рассуждая аналогично, получим U2 = +I2r2 + IR. ЭДС будет входить в уравнение также со знаком «+».
Второе уравнение имеет вид: I2R2 + IR = e2.
5. Получили систему из трех уравнений с тремя неизвестными.
Решая систему, находим величину тока I2
.
Полный ток через сопротивление R равен сумме токов
I = I1 + I2 = 1,5 A.
Сопротивление R находим из одного из уравнений системы:
.
Ответ: ток через второй источник равен I2 = 0,5 А, суммарный ток
I = I1 + I2 = 1,5 А. Внешнее сопротивление R = 0,66 Ом.
Два одинаковых элемента имеют ЭДС e1 = e2 = 2 В и внутренние сопротивления r1 = r 2 = 0,5 Ом. Найдите токи I1 и I2, текущие через сопротивления R1 = 0,5 Ом и R2 = 1,5 Ом, а также ток I через первый элемент. Схема заданной цепи изображена на рисунке.
Дано:
e 1 = e2 = 2 В;
R2 = 1,5 Ом
1. Выберем направления токов на всех участках так, как показано на рисунке. Видим, что в узлах 1 и 2 есть входящие и есть выходящие токи, значит, направления токов выбраны верно.
2. Выберем два контура обхода: большой и малый. Укажем направления обходов по контурам. Контуров обхода в заданной цепи можно выбрать три, но для нахождения трех неизвестных величин достаточно трех уравнений. Узлов всего два, поэтому можно составить только одно уравнение, применяя первый закон Кирхгофа. Недостающих два уравнения составим используя второй закон Кирхгофа.
3. Для первого узла запишем:
I2 + I1 – I = 0.
4. Учитывая правила определения знаков всех слагаемых при применении второй закон Кирхгофа для большого контура, получаем уравнение:
Для малого контура:
5.Получили систему из трех уравнений с тремя неизвестными величинами I1; I2 и I.
Решать систему линейных уравнений можно разными способами. В случае, когда система состоит из большого числа уравнений удобно пользоваться методом Крамера (методом определителей). Проиллюстрируем применение этого метода решения на нашей системе уравнений. Для этого перепишем систему ещё раз:
или в численном виде; если поделить правую и левую части второго и третьего уравнении на « 0,5» получим
Искомые величины токов по методу определителей находятся следующим образом: и ,
где определители — определитель системы уравнений, и -определители, которые получаются заменой соответствующих столбцов определителя столбцами, полученными из свободных членов уравнений образующих систему (с учетом заданных числовых значений). Запишем эти определители:
По приведенным выше формулам, получаем
и .
Значение третьего тока можно найти аналогичным способом, но проще его значение получить из первого уравнения нашей системы:
I2 + I1 – I = 0 или I = I2 + I1 = 1,33 + 1,33 = 2,66 А
Знаки у всех полученных значений силы тока положительные, это свидетельствует о том, что при произвольном выборе направлений токов, указанных на рисунке, все направления токов были выбраны правильно.
Ответ: I1 = 1,33 А ; I2 = 1.33 А ; I = I1 + I2 = 2.66 А.
Два элемента с одинаковыми ЭДС 1 = 2 = 2В и внутренними сопротивлениями r1 = 1 Ом, r2 = 2 Ом замкнуты на внешнее сопротивление R. Через элемент с ЭДС 1 — течет ток I1 = 1 А. Найти сопротивление R и ток I2, текущий через элемент с ЭДС 2. Какой ток течет через сопротивление R. Схема соединения показана на рисунке.
Д ано:
R — ? I — ?
Выберем направления токов на всех участках цепи. Видим, что в узлах 1 и 2 есть входящие и есть выходящие токи, значит, направления токов выбраны разумно.
Выберем контуры обхода и покажем направления обхода по ним.
Составим уравнение, используя первый закон Кирхгофа для первого узла:
Токи, входящие в узел, пишем со знаком «+», а входящие с «–». Всего можно написать одно уравнение, т.к. второе будет тождественно первому.
Воспользуемся вторым законом Кирхгофа. Запишем уравнение для первого контура обхода. Падение напряжения на всех участках 1-го контура напишем со знаком «+», т.к. направление обхода на этих участках совпадает с направлением тока
В этот контур входит только ЭДС 1, и направление обхода по контуру совпадает с направлением поля сторонних сил, т.к. силы этого поля направлены от отрицательного полюса к положительному.
Для второго контура U2 = +I2r2 + IR. И ЭДС будет входить в уравнение также со знаком «+».
Запишем уравнение I2R2 + IR = 2.
Получим систему из трех уравнений с тремя неизвестными.
Решая систему, получаем
.
Полный ток через сопротивление R равен сумме токов
I = I1 + I2 = 1,5 A.
Сопротивление R находим из одного из уравнений
.
Ответ. Ток через второй источник равен I2 = 0,5 А, суммарный ток
I = I1 + I2 = 1,5 А. Внешнее сопротивление R = 2/3 Ом.
Два одинаковых элемента имеют ЭДС 1 = 2 = 2 В и внутренние сопротивления r1 = l2 =0,5 Ом. Найти токи I1 и I2, текущие через сопротивления R1 = 0,5 Ом и R2 = 1,5 Ом, а также ток I через элемент с ЭДС. Схема изображена на рисунке.
Д ано:
Выберем направления токов на всех участках. Запишем первый закон Кирхгофа для 1-го узла
Выберем большой и малый контуры обхода. Для большого контура уравнение будет иметь вид:
Для малого контура
Получили три уравнения
В эти уравнения входят три неизвестных величины I1; I2 и I. Решаем систему уравнений и находим
I1 = 2,28 А ; I2 = 0,56 А ; I = I1 + I2 = 1,72 А.
Примеры решения задач на законы Кирхгофа
Рассмотрим на примерах как можно использовать законы Кирхгофа при решении задач.
Задача 1
Дана схема, и известны сопротивления резисторов и ЭДС источников. Требуется найти токи в ветвях, используя законы Кирхгофа.
Используя первый закон Кирхгофа, можно записать n-1 уравнений для цепи. В нашем случае количество узлов n=2, а значит нужно составить только одно уравнение.
Напомним, что по первому закону, сумма токов сходящихся в узле равна нулю. При этом, условно принято считать входящие токи в узел положительными, а выходящими отрицательными. Значит для нашей задачи
Затем используя второй закон (сумма падений напряжения в независимом контуре равна сумме ЭДС в нем) составим уравнения для первого и второго контуров цепи. Направления обхода выбраны произвольными, при этом если направление тока через резистор совпадает с направлением обхода, берем со знаком плюс, и наоборот если не совпадает, то со знаком минус. Аналогично с источниками ЭДС.
На примере первого контура – ток I1 и I3 совпадают с направлением обхода контура (против часовой стрелки), ЭДС E1 также совпадает, поэтому берем их со знаком плюс.
Уравнения для первого и второго контуров по второму закону будут:
Все эти три уравнения образуют систему
Подставив известные значения и решив данную линейную систему уравнений, найдем токи в ветвях (способ решения может быть любым).
Проверку правильности решения можно осуществить разными способами, но самым надежным является проверка балансом мощностей.
Задача 2
Зная сопротивления резисторов и ЭДС трех источников найти ЭДС четвертого и токи в ветвях.
Как и в предыдущей задаче начнем решение с составления уравнений на основании первого закона Кирхгофа. Количество уравнений n-1= 2
Затем составляем уравнения по второму закону для трех контуров. Учитываем направления обхода, как и в предыдущей задаче.
На основании этих уравнений составляем систему с 5-ью неизвестными
Решив эту систему любым удобным способом, найдем неизвестные величины
Для этой задачи выполним проверку с помощью баланса мощностей, при этом сумма мощностей, отданная источниками, должна равняться сумме мощностей полученных приемниками.
Баланс мощностей сошелся, а значит токи и ЭДС найдены верно.
Законы Кирхгофа
Законы Кирхгофа – правила, которые показывают, как соотносятся токи и напряжения в электрических цепях. Эти правила были сформулированы Густавом Кирхгофом в 1845 году. В литературе часто называют законами Кирхгофа, но это не верно, так как они не являются законами природы, а были выведены из третьего уравнения Максвелла при неизменном магнитном поле. Но все же, первое более привычное для них название, поэтому и мы будет их называть, как это принято в литературе – законы Кирхгофа.
Первый закон Кирхгофа – сумма токов сходящихся в узле равна нулю.
Давайте разбираться. Узел это точка, соединяющая ветви. Ветвью называется участок цепи между узлами. На рисунке видно, что ток i входит в узел, а из узла выходят токи i 1 и i 2 . Составляем выражение по первому закона Кирхгофа, учитывая, что токи, входящие в узел имеют знак плюс, а токи, исходящие из узла имеют знак минус i-i 1 -i 2 =0. Ток i как бы растекается на два тока поменьше и равен сумме токов i 1 и i 2 i=i 1 +i 2 . Но если бы, например, ток i 2 входил в узел, тогда бы ток I определялся как i=i 1 -i 2 . Важно учитывать знаки при составлении уравнения.
Первый закон Кирхгофа это следствие закона сохранения электричества: заряд, приходящий к узлу за некоторый промежуток времени, равен заряду, уходящему за этот же интервал времени от узла, т.е. электрический заряд в узле не накапливается и не исчезает.
Второй закон Кирхгофа – алгебраическая сумма ЭДС, действующая в замкнутом контуре, равна алгебраической сумме падений напряжения в этом контуре.
Напряжение выражено как произведение тока на сопротивление (по закону Ома).
В этом законе тоже существуют свои правила по применению. Для начала нужно задать стрелкой направление обхода контура. Затем просуммировать ЭДС и напряжения соответственно, беря со знаком плюс, если величина совпадает с направлением обхода и минус, если не совпадает. Составим уравнение по второму закону Кирхгофа, для нашей схемы. Смотрим на нашу стрелку, E2 и Е3 совпадают с ней по направлению, значит знак плюс, а Е1 направлено в противоположную сторону, значит знак минус. Теперь смотрим на напряжения, ток I1 совпадает по направлению со стрелкой, а токи I2 и I3 направлены противоположно. Следовательно:
На основании законов Кирхгофа составлены методы анализа цепей переменного синусоидального тока. Метод контурных токов – метод основанный на применении второго закона Кирхгофа и метод узловых потенциалов основанный на применении первого закона Кирхгофа.