Экспериментальное определение величины элементарного электрического заряда кто открыл
Перейти к содержимому

Экспериментальное определение величины элементарного электрического заряда кто открыл

  • автор:

Опыт Милликена

Опыт Милликена — опыт по измерению элементарного электрического заряда (заряда электрона), проведённый Робертом Милликеном и Харви Флетчером (англ.)русск. в 1909 году [1] .

Идея эксперимента состоит в нахождении баланса между силой тяжести, силой Стокса и электрическим отталкиванием. Управляя мощностью электрического поля, Милликен и Флетчер удерживали мелкие капельки масла в механическом равновесии. Повторив эксперимент для нескольких капель, учёные подтвердили, что общий заряд капли складывается из нескольких элементарных. Значение заряда электрона в опыте 1911 года получилось равным Кл, что на 1 % отличается от современного значения в Кл.

Предпосылки В 1913 профессор чикагского университета Р. Милликен в соавторстве [2] с Х. Флетчером опубликовали проект своего опыта. [3] В данном эксперименте измерялась сила электрического поля, которое может удерживать заряженную капельку масла между двумя электродами. По значению этого поля измерялся заряд капли. Сами капли электризовались во время разбрызгивания. Во времена опыта не было очевидным существование субатомных частиц, и большинство физических явлений [ каких? ] можно было объяснить, приняв заряд непрерывно изменяющейся величиной. Так называемый элементарный заряд e является одной из фундаментальных физических констант и знать его точное значение очень важно. В 1923 г. Милликен получил Нобелевскую премию по физике отчасти и за этот эксперимент. Описание опыта В пространство между двумя пластинами под напряжением (в конденсатор) Милликен вводил мельчайшие заряженные капли масла, которые могли находиться в неподвижном состоянии в определённом электрическом поле. Равновесие наступало при условии , где — результирующая сил тяжести и силы Архимеда; , где в свою очередь — плотность капли масла; — её радиус в предположении, что капля сферична; — плотность воздуха Из указанных формул можно, зная и , найти . Для определения радиуса капли измерялась скорость равномерного падения капельки в отсутствие поля, так как равномерное движение устанавливается тогда, когда сила тяжести уравновешивается силой сопротивления воздуха , где — вязкость воздуха. Зафиксировать неподвижность капли было сложно в то время, поэтому вместо поля, удовлетворяющего условию использовалось поле, под воздействием которого капля начинала двигаться с небольшой скоростью вверх. Очевидно, что если скорость подъёма равна , то , откуда В ходе опыта получен важный факт: все величины, которые получались у Милликена, оказывались кратными одной и той же величине. Таким образом было экспериментально показано, что заряд — дискретная величина.

23.Опыт Милликена, заряд электрона.

Первое прецизионное измерение электрического заряда электрона — заслуга Роберта Милликена. Его экспериментальная установка представляла собой большой и емкий плоский конденсатор из двух металлических пластин с камерой между ними. На обкладки конденсатора Милликен подавал постоянное напряжение от мощной батареи, создавая на них высокую разность потенциалов, а между обкладками помещал мелко распыленные капли — сначала воды, а затем масла, которое, как выяснилось, ведет себя в электростатическом поле значительно устойчивее, а главное — испаряется гораздо медленнее. Сначала Милликен измерил предельную скорость падения капель — то есть скорость, при которой сила земного притяжения, действующая на капли, уравновешивается силой сопротивления воздуха. По этой скорости ученый определил объем и массу капель аэрозольной взвеси. После этого он распылил идентичный аэрозоль в присутствии электростатического поля, то есть при подключенной батарее. В этом случае масляные капли оставались в подвешенном состоянии достаточно долго, поскольку силы гравитационного притяжения Земли уравновешивались силами электростатического отталкивания между каплями аэрозоля. Причина, по которой капли масляного аэрозоля электризуются, банальна: это простой электростатический заряд, подобный тому, который накапливается, скажем, на белье, которое мы достаем из сушильной центрифуги, в результате того что ткань трется о ткань — он возникает в результате трения капель о воздух, заполняющий камеру. Накопив достаточно экспериментальных данных для статистической обработки, Милликен вычислил величину единичного заряда и опубликовал полученные результаты, которые содержали максимально точно для тех лет рассчитанный заряд электрона.

В природе существуют только два вида зарядов – положительные и отрицательные. Заряды одного отталкиваются, заряды разных знаков притягиваются. Наименьшим (элементарным) зарядом обладают элементарные частицы. Элементарный отрицательный заряд равен по величине элементарному положительному заряду. В системе СИ заряд измеряется в кулонах (Кл). Величина элементарного заряда e =1,6∙Кл.

В природе нигде и никогда не возникает и не исчезает электрический заряд одного знака. Появление положительного электрического заряда +q всегда сопровождается появлением равного по абсолютной величине отрицательного электрического заряда —q. Ни положительный, ни отрицательный заряды не могут исчезнуть по отдельности один от другого, они могут лишь взаимно нейтрализовать друг друга, если равны по абсолютной величине. Этот экспериментально установленный факт называется законом сохранения электрического заряда, который формулируется следующим образом: в электрически изолированной системе алгебраическая сумма зарядов остаётся постоянной:

const. (1.1)

Изолированной называется система, не обменивающаяся зарядами с внешней средой.

24.Поле электрического диполя

Дипо́ль— идеализированная система, служащая для приближённого описания распространенияполя.

Типичный пример диполя — два заряда, равных по величине и противоположных по знаку, находящихся на расстоянии друг от друга, очень малом по сравнению с расстоянием до точки наблюдения. Поле такой системы полностью описывается дипольным приближением.

Силовые линии электрического диполя

Электрический диполь— идеализированная электронейтральная система, состоящая из точечных и равных по абсолютной величине положительного и отрицательногоэлектрических зарядов.

Другими словами, электрический диполь представляет из себя совокупность двух равных по абсолютной величине разноимённых точечных зарядов, находящихся на некотором расстоянии друг от друга

Произведение вектора проведённого от отрицательного заряда к положительному, на абсолютную величину зарядовназывается дипольным моментом:

Во внешнем электрическом поле на электрический диполь действует момент силкоторый стремится повернуть его так, чтобы дипольный момент развернулся вдоль направления поля.

Потенциальная энергия электрического диполя в электрическом поле равна

Вдали от электрического диполя напряжённость его электрического поляубывает с расстояниемкакR − 3 , то есть быстрее, чем уточечного заряда(E˜R − 2 ).

Любая в целом электронейтральная система, содержащая электрические заряды, в некотором приближении может рассматриваться как электрический диполь с моментом где— зарядi-го элемента,— его радиус-вектор. При этом дипольное приближение будет корректным, если расстояние, на котором изучается электрическое поле системы, велико по сравнению с её характерными размерами.

У вас большие запросы!

Точнее, от вашего браузера их поступает слишком много, и сервер VK забил тревогу.

Эта страница была загружена по HTTP, вместо безопасного HTTPS, а значит телепортации обратно не будет.
Обратитесь в поддержку сервиса.

Вы отключили сохранение Cookies, а они нужны, чтобы решить проблему.

Почему-то страница не получила всех данных, а без них она не работает.
Обратитесь в поддержку сервиса.

Вы вернётесь на предыдущую страницу через 5 секунд.
Вернуться назад

16.3. Опыт Милликена

Мысль о дискретности электрического заряда впервые была высказана Б. Франклином в 1752 г. Экспериментально дискретность зарядов была обоснована законами электролиза, открытыми М. Фарадеем в 1834 г. Числовое значение элементарного заряда (наименьшего электрического заряда, встречающегося в природе) было теоретически вычислено на основании законов электролиза с использованием числа Авогадро. Прямое экспериментальное измерение элементарного заряда было выполнено Р. Милликеном в классических опытах, выполненных в 1908 – 1916 гг. Эти опыты дали также неопровержимое доказательство атомизма электричества.

Согласно основным представлениям электронной теории, заряд какого-либо тела возникает в результате изменения содержащегося в нём количества электронов (или положительных ионов, величина заряда которых кратна заряду электрона). Поэтому заряд любого тела должен изменяться скачкообразно и такими порциями, которые содержат целое число зарядов электрона.

Все физики интересовались величиной электрического заряда электрона, и, тем не менее, до сих пор не удалось ее измерить. Много попыток провести это решающее измерение уже предпринял Дж. Дж. Томсон, но прошло десять лет работы, и ассистент Томсона Г. Вильсон сообщил, что после одиннадцати различных измерений они получили одиннадцать различных результатов.

Прежде чем начать исследования по своему собственному методу, Милликен ставил опыты по методу, применявшемуся в Кембриджском университете. Теоретическая часть эксперимента заключалась в следующем: масса тела определялась путем измерения давления, производимого телом под воздействием силы тяжести на чашу весов. Если сообщить бесконечно малой частице вещества электрический заряд и если приложить направленную вверх электрическую силу, равную силе тяжести, направленной вниз, то эта частица будет находиться в состоянии равновесия, и физик может рассчитать величину электрического заряда. Если в данном случае частице будет сообщен электрический заряд одного электрона, можно будет высчитать величину этого заряда.

Кембриджская теория была вполне логичной, но физики никак не могли создать прибор, при помощи которого можно было бы заниматься исследованиями отдельных частиц веществ. Им приходилось довольствоваться наблюдением за поведением облака из водяных капель, заряженных электричеством. В камере, воздух из которой был частично удален, создавалось облако пара. К верхней части камеры подводился ток. Через определенное время капельки тумана в облаке успокаивались. Затем сквозь туман пропускали икс – лучи, и водяные капли получали электрический заряд.

При этом исследователи полагали, что электрическая сила, направленная вверх, к находящейся под высоким напряжением крышке камеры, должна якобы удерживать капли от падения. Однако на деле не выполнялось ни одно из сложных условий, при которых, и только при которых, частицы могли бы находиться в состоянии равновесия.

Милликен начал искать новый путь решения проблемы.

В основу метода положено изучение движения заряженных капелек масла в однородном электрическом поле известной напряжённости Е.

Рис 15.2 Схема экспериментальной установки: Р – распылитель капель; К – конденсатор; ИП – источник питания; М – микроскоп; hn – источник излучения; П – поверхность стола.

Схема одной из установок Милликена приведена на рис 15.1. Милликен измерял электрический заряд, сосредоточенный на отдельных маленьких каплях сферической формы, которые формировались распылителем Р и приобретали электрический заряд электризацией трением о стенки распылителя. Через малое отверстие в верхней пластине плоского конденсатора К они попадали в пространство между пластинами. За движением капли наблюдали в микроскоп М.

С целью предохранения капелек от конвекционных потоков воздуха конденсатор заключён в защитный кожух, температура и давление в котором поддерживаются постоянными. При выполнении опытов необходимо соблюдать следующие требования:

  1. капли должны быть микроскопических размеров, чтобы силы, действующие на каплю в разных направлениях (вверх и вниз) были сопоставимы по величине;
  2. заряд капли, а также его изменения при облучении (использовании ионизатора) были равны достаточно малому числу элементарных зарядов. Это позволяет легче установить кратность заряда капли элементарному заряду;
  3. плотность капли r должна быть больше плотности вязкой среды r0, в которой она движется (воздуха);
  4. масса капли не должна меняться в течение всего опыта. Для этого масло, из которого состоит капля не должно испаряться (масло испаряется значительно медленнее воды).

Если пластины конденсатора не были заряжены (напряженность электрического поля Е = 0), то капля медленно падала, двигаясь от верхней пластины к нижней. Как только пластины конденсатора заряжались, в движении капли происходили изменения: в случае отрицательного заряда на капле и положительного на верхней пластине конденсатора падение капли замедлялось, и в некоторый момент времени она меняла направление движения на противоположное – начинала подниматься к верхней пластине.

Определение элементарного заряда посредством вычислительного эксперимента.

Зная скорость падения капли в отсутствие электростатического поля (заряд ее не играл роли) и скорость падения капли в заданном и известном электростатическом поле, Милликен мог вычислить заряд капли.

Из-за вязкого сопротивления капля почти сразу после начала движения (или изменения условий движения) приобретает постоянную (установившуюся) скорость и движется равномерно. В силу этого а = 0, и можно найти скорость движения капли. Обозначим модуль установившейся скорости в отсутствие электростатического поля – vg, тогда:

Если замкнуть электрическую цепь конденсатора (рис 1), то он зарядится и в нем создастся электростатическое поле Е. При этом на заряд будет действовать дополнительная к перечисленным сила q·E, направленная вверх. Закон Ньютона в проекции на ось Х и с учетом, что а = 0, примет вид:

-(m – m0)·g + q·E – k·vE = 0 (16.6)

vE = (q·E – (m – m0)·g/k (16.7),

где vE – установившаяся скорость масляной капли в электростатическом поле конденсатора; vE > 0, если капля движется вверх, vE < 0, если капля движется вниз. Отсюда следует что

q = (vE + |vg|)·k/E (16.8),

следует, что измеряя установившиеся скорости в отсутствие электростатического поля vg и при его наличии vE, можно определить заряд капли, если известен коэффициент k = 6·p·h·r.

Казалось бы, для нахождения k достаточно измерить радиус капли (вязкость воздуха известна из других экспериментов). Однако прямое ее измерение с помощью микроскопа невозможно. Радиус капли имеет порядок величины r = 10 -4 – 10 -6 см, что сравнимо по порядку величины с длиной световой волны. Поэтому микроскоп дает лишь дифракционное изображение капли, не позволяя измерить ее действительные размеры.

Сведения о радиусе капли можно получить из экспериментальных данных о ее движении в отсутствие электростатического поля. Зная vg и учитывая, что

где r – плотность масляной капли,

В своих опытах Милликен изменял заряд капли, поднося кусок радия к конденсатору. При этом излучение радия ионизировало воздух в камере (рис 1), в результате чего капля могла захватить дополнительно положительный или отрицательный заряд. Если до этого капля была заряжена отрицательно, то понятно, что с большей вероятностью она присоединит к себе положительные ионы. С другой стороны, вследствие теплового движения не исключено присоединение и отрицательных ионов в результате столкновения с ними. В том и другом случаях изменится заряд капли и – скачкообразно – скорость ее движения vE‘. Величина q’ измененного заряда капли в соответствии с (16.10) еляется соотношением:

Из (1) и (3) определяется величина присоединенного каплей заряда:

Сравнивая величины заряда одной и той же капли, можно было убедиться, что величина изменения заряда и сам заряд капли являются кратными одной и той же величине е0 – элементарному заряду. В своих многочисленных опытах Милликен получал различные значения зарядов q и q’, но всегда они представляли кратное величины е0 = 1.7 . 10 -19 Кл, то есть q = n·е0, где n – целое число. Отсюда Милликен заключил, что величина е0 представляет наименьшее возможное в природе количество электричества, то есть «порцию», или атом электричества. Наблюдение за движением одной и той же капли, т.е. за её перемещением вниз (в отсутствие электрического поля) и вверх (при наличии электрического поля) в каждом опыте Милликен повторял многократно, своевременно включая и выключая электрическое поле. Точность измерения заряда капли существенно зависит от точности измерения скорости её движения.

Установив на опыте дискретный характер изменения электрического заряда, Р. Милликен смог получить подтверждение существования электронов и определить величину заряда одного электрона (элементарный заряд) используя метод масляных капель.

Современное значение «атома» электричества е0 = 1.602 . 10 -19 Кл. Эта величина и есть элементарный электрический заряд, носителями которого являются электрон е0 = – 1.602 . 10 -19 Кл и протон е0 = +1.602 . 10 -19 Кл. Работы Милликена внесли огромный вклад в физику и дали огромнейший толчок развитию научной мысли в будущем.

Контрольные вопросы:

  1. В чем сущность метода Томсона?
  2. Экспериментальная схема установки?
  3. Трубка Томсона?
  4. Вывод формулы отношение заряда к массе частицы?
  5. В чем основная задача электронной и ионной оптики? И как их принято называть?
  6. Когда был открыт «метод магнитной фокусировки»?
  7. В чем его суть?
  8. Как определяется удельный заряд электрона?
  9. Изобразить схему установки по опыту Милликена?
  10. Какие требования необходимо соблюдать при выполнении опыта?
  11. Определение элементарного заряда посредством вычислительного эксперимента?
  12. Вывод формулы заряда капли через скорость падения капли?
  13. Современное значение «атома» электричества?

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *