Что называется операционным усилителем
Перейти к содержимому

Что называется операционным усилителем

  • автор:

Операционный усилитель

В настоящее время наиболее важной разновидностью УПТ является операционный усилитель (ОУ).

Операционный усилитель (ОУ) – это усилитель постоянного тока (УПТ) в интегральном исполнении с двумя входами (инвертирующим и неинвертирующим), или как говорят, с дифференциальным входом, с большим коэффициентом усиления для дифференциального сигнала, с большим входным и малым выходным сопротивлениями.

Первоначально операционными (решающими) усилителями назывались УПТ для выполнения математических операций в аналоговых вычислительных машинах (суммирование, вычитание, интегрирование и т.д.). С появлением ОУ в интегральном исполнении их область применения существенно расширилась, и они превратились в универсальные электронные компоненты для построения разнообразных электронных устройств.

Операционный усилитель (ОУ, OpAmp) – усилитель постоянного тока с дифференциальным входом и, как правило, единственным выходом, имеющий высокий коэффициент усиления. ОУ почти всегда используются в схемах с глубокой отрицательной обратной связью, которая, благодаря высокому коэффициенту усиления ОУ, полностью определяет коэффициент передачи полученной схемы.

В настоящее время ОУ получили широкое применение, как в виде отдельных чипов, так и в виде функциональных блоков в составе более сложных интегральных схем. Такая популярность обусловлена тем, что ОУ является универсальным блоком с характеристиками, близкими к идеальным, на основе которого можно построить множество различных электронных узлов.

Существует несколько вариантов подачи сигнала на входы ДК, основными являются дифференциальный и синфазный сигналы.

Дифференциальным называется такой входной сигнал uвх.д , при котором его половина uвх.д/2 подаётся относительно общей точки схемы на один вход, а другая половина подаётся в противофазе на второй вход, т.е.

, .

Таким будет входной сигнал uвх.д , если его подать между входами ОУ, когда напряжение uвх.д делится входными цепями транзисторов пополам.

Входной сигнал ДК называется синфазным, когда подается с одинаковым знаком, амплитудой и фазой на оба входа, т.е. uвх1 = uвх2 = uвх.с

Синфа́зный сигнал – составляющая аналогового сигнала, присутствующая с одним знаком, амплитудой и фазой на всех рассматриваемых выводах. В электронике, где сигнал передаётся с использованием напряжения, синфазный сигнал определяется обычно как полусумма напряжений:

Синфазный сигнал можно рассчитать зная величину дифференциального сигнала (Uдиф) и величину аналогового сигнала (U) «в роли уменьшаемого» на одном из выводов:

Синфазный сигнал в системах связи

Электронные системы кабельной связи, например множество Ethernet технологий, обычно построены по принципу передачи дифференциального сигнала через кабели, состоящие из витых пар. Синфазный сигнал в таких системах представляет собой помеху, которая должна быть подавлена на терминальном оборудовании. Однако из-за разбалансировки пары и несовершенства терминальных устройств часть синфазного сигнала переходит в дифференциальный сигнал, чем вызывает искажения полезного сигнала и соответственно увеличение вероятности потери передаваемых данных.

18.Операционный усилитель: назначение, устройство, характеристики, типы.

Операционный усилитель (ОУ)— усилители с гальваническими (безконденсаторными) связями, которые имеют дифференциальный вход, один выход и работают при наличии глубокой ОС, которая практически полностью определяет параметры и характеристики устройств, собранных на них.

Полное обозначение: В соответствии с ГОСТ 2759-82 обозначение элементов аналоговой техники выполняется на основе прямоугольника.

Операционный усилитель состоит из 3-х основных каскадов: 1) дифференциальный каскад выполняет роль ослабления синфазного сигнала; 2) каскад с общим эмиттером с источником тока в коллекторной цепи — основной усилительный каскад напряжения Ku=10 3 ..10 5 ; 3) двухтактный эмиттерный повторитель в режиме класса В – предназначен для согласования высокого входного сопротивления источника тока с невысоким сопротивлением нагрузки, кроме этого обеспечивает усиление мощности выходного сигнала.. Кроме того, ОУ может содержать схему защиты выхода от КЗ, схему защиты входа от перенапряжения.

По типам входных каскадов ОУ делятся:

— на БПТ — широкий диапазон применения, хорошая балансировка, высокое входное сопротивление, больший сдвиг и дрейф;

— на ПТ – высокое входное сопротивление, большой сдвиг и дрейф нуля по сравнению с БПТ;

— на БПТ со сверхвысоким усилением (транзисторы супер β) — обеспечивают входное сопротивление, сопоставимое с каскадом на ПТ, величина сдвигов, и дрейфов как у обычных БПТ;

— с гальванической изоляцией входа от выхода — используется модуляция или оптические методы, применяется в медицине и технике высоких напряжений;

— на варикапе — имеют очень малый входной ток смещения, используются для усиления тока на фотоумножителях.

  • входное напряжение
  • max диф. входное напряжение
  • max синфазное входное напряжение
  • входной ток смещения
  • max выходные U и I
  • параметры смещения

дрейф (температурный и временный) частотные -динамические — скорость нарастания выходного напряжения Важнейшими характеристиками ОУ являются амплитудные (передаточные) Uвых=f(Uвх) и амплитудно-частотные (АЧХ) кU(f). Амплитудно-частотная характеристика имеет вид АЧХ усилителя постоянного тока за исключением специальных частотнозависимых устройств (избирательный усилитель и др.). Передаточные характеристики имеют линейный участок, для которого кU==const, и нелинейный — кUкU. При реализации конкретных устройств используют линейные и нелинейные участки. Рассмотрим примеры построения устройств на базе ОУ. Если необходима большая амплитуда на max частоте выходного неискажённого сигнала либо форма сигнала не синусоидальна, а импульсная с большой крутизной фронтов, необходимо применять ОУ с высокой скоростью нарастания напряжения (это осуществляется опережающей внутренней или внешней коррекцией ОУ, что приводит к неустойчивой работе при малых коэффициентах усиления). На некоторой частоте начинает влиять паразитная ёмкость первого усилительного каскада, в дополнение к влиянию ёмкости второго усилительного каскада, который начинает сказываться с частотой несколько сотен Гц. Частотная характеристика: Полоса пропускания 1МГц означает, что кu·f=const.fгр= 106ГцПараметры ОУ:

  • входные
  • выходные
  • усилительные
  • энергетические
  • дрейфовые
  • частотные
  • скоростные

Входными параметрами ОУ являются входное сопротивление, входные токи смещения, разность и дрейф входных токов смещения, максимальные, входные и дифференциальные напряжения. Наличие входных токов смещения обуславливается конечным значением входного сопротивления дифференциального каскада, а их разность — разбросом параметров транзисторов. Входное сопротивление ОУ рассматривается по отношению к входному сигналу. Для идеального ОУ , а на практике составляет от 300КОм до 10Мом, если дифференциальный каскад выполнен на БПТ, а если на ПТ, тоМом. Выходными параметрами ОУ являются выходное сопротивление, максимальное выходное напряжение и ток. ОУ должен обладать малым выходным сопротивлением для обеспечения высоких значений напряжения на выходе при малых сопротивлениях нагрузки. Диапазон реальных значений выходного сопротивления лежит в пределах от единиц до нескольких сотен Ом. Минимальное значение сопротивления нагрузки приводится в паспортных данных. Максимальное выходное напряжение близко к напряжению питания . Максимальный выходной ток ограничивается допустимым коллекторным током от обоих источников питания и соответственно суммарной потребляемой мощностью. Частотные параметры определяют по АЧХ ОУ, которая имеет спадающий характер в области высокой частоты, начиная от частоты среза. Причиной этого является частотная зависимость параметров транзисторов и паразитных емкостей схемы ОУ. По инвертирующему входу ОУ обычно охватывается ООС. В области высоких частот это приводит к дополнительному (сверх 180˚) фазовому сдвигу, который в пределе может достигать значения в 360˚. Т.о возникает ПОС, что приводит к самовозбуждению схемы. Для устранения самовозбуждения в ОУ вводят внешние корректирующие RC-цепи и места их подключения к микросхеме указываются заводом изготовителем. Динамическими параметрами ОУ являются скорость нарастания выходного напряжения и время установления выходного напряжения. Они определяются по воздействию скачка напряжения на входе на участке изменения выходного напряжения от 0,1 до. Энергетические параметры ОУ оцениваются максимальными потребляемыми токами от обоих источников питания и соответственно суммарной потребляемой мощностью. Инвертирующий усилитель: Если в цепи обратной связи использовать простейший делитель напряжения, то получится базовая схема инвертирующего усилителя. Потенциал на инвертирующем входе U— =0. Так как ОУ находится в линейном режиме, тогда U— —U+=Uвых0 . Например, при Uвых=5 В, К0= 2·105 получаем UА=25мкВ. Такое малое напряжение (оно сравнимо с термо-э.д.с. при ∆Т=1ºС) даже невозможно измерить обычным цифровым вольтметром. Отсюда следует, что потенциалы на выходах ОУ можно с хорошей точностью считать равными. Если один из входов ОУ заземлить, на втором входе будет также поддерживаться нулевой потенциал, хотя напрямую входы ОУ гальванически не связаны. Этот эффект называется мнимым заземлением. Таким образом, из U+= 0 следует U=0,Uвх =UR5 (падение напряжения на R5); Uвых =UR19 (падение напряжения на R19). Поскольку входной ток ОУ очень мал, им можно пренебречь, тогда получим I5 =Uвх/R5= —Uвых/R19. Это означает, что для инвертирующего усилителя Кu=Uвых/Uвх = —R19/R5. Коэффициент усиления . 19Операционный усилитель (ОУ)— усилители с гальваническими (безконденсаторными) связями, которые имеют дифференциальный вход, один выход и работают при наличии глубокой ОС, которая практически полностью определяет параметры и характеристики устройств, собранных на них. Обозначение:«-» — инвертирующий вход «+» — неинвертирующий вход Полное обозначение: В соответствии с ГОСТ 2759-82 обозначение элементов аналоговой техники выполняется на основе прямоугольника. Инвертирующий усилитель: Если в цепи обратной связи использовать простейший делитель напряжения, то получится базовая схема инвертирующего усилителя. Потенциал на инвертирующем входе U— =0. Так как ОУ находится в линейном режиме, тогда U— —U+=Uвых0 . Например, при Uвых=5 В, К0= 2·105 получаем UА=25мкВ. Такое малое напряжение (оно сравнимо с термо-э.д.с. при∆Т=1ºС) даже невозможно измерить обычным цифровым вольтметром. Отсюда следует, что потенциалы на выходах ОУ можно с хорошей точностью считать равными. Если один из входов ОУ заземлить, на втором входе будет также поддерживаться нулевой потенциал, хотя напрямую входы ОУ гальванически не связаны. Этот эффект называется мнимым заземлением. Таким образом, из U+= 0 следует U=0,Uвх =UR5 (падение напряжения на R5); Uвых =UR19 (падение напряжения на R19). Поскольку входной ток ОУ очень мал, им можно пренебречь, тогда получим I5 =Uвх/R5= —Uвых/R19. Это означает, что для инвертирующего усилителя Кu=Uвых/Uвх = —R19/R5. Коэффициент усиления . Неинвертирующий усилитель:Так как U+U, то Uвх =U=UR8 (падение напряжения на R8); Uвых =UR8+UR20 (падение напряжения на R20 и R8). Поскольку входной ток ОУ очень мал, им можно пренебречь, тогда получим Ioc=Uвх/R8=Uвых/(R20+R8). Это означает, что для неинвертирующего усилителя Кu=Uвых/Uвх = 1+R20/R8. 20Инвертирующий и неинвертирующий сумматорыДействие этой схемы в точности соответствует ее названию. Инвертирующий сумматор формирует алгебраическую сумму нескольких напряжений и меняет ее знак на обратный. Если отдельным входным напряжениям надо придать раз­личные веса, то используется схема суммирования с масштаб­ными коэффициентами. Используется для суммирования сигналов, для цифро-аналогового преобразователя. В сумматоре отсутствует взаимное влияние источников сигналов. Для инвертирующего сумматора выходное напряжение определяется по формуле . При равенстве входных сопротивлений R1=R2=RUвых=-(Uвх.1+Uвх.2+. +Uвх.n) — для инвертирующего сумматора; — для неинвертирующего сумматора. В схеме сумматоров переменным параметром является сопротивление обратной связи Rо.с, которое и определяет коэффициент усиления. Формулы приведены для постоянных величин (числовой сумматор) Uвх.1, Uвх.2 и т.д. Дифференциатор:выполняет операцию . Для интегратора и дифференциатора на инвертирующий вход подаются прямоугольные импульсы с выхода симметричного мультивибратора. На рисунке, а приведен электрический аналог и на рисунке,б временные диаграммы, поясняющие принцип дифференцирования и интегрирования в электрических и электронных цепях.Uвых= —IосRосIос=C·dUс/dtUс=UвхUвых= —RосC·dUвх/dt Используется для выделения переднего и заднего фронтов сигнала, а так же в качестве звена ФВЧ первого порядка.

5. Операционные усилители

Основным активным элементом современной аналоговой схемотехники является операционный усилитель – сложная схема, выполненная в интегральном исполнении (т. е. интегральная микросхема). Термин «операционный усилитель» (сокращенно ОУ) исторически восходит к ламповым аналоговым вычислительным машинам (АВМ) – приборам, позволяющим представить некоторые неэлектрические процессы изменениями во времени электрических величин (токов, напряжений); иными словами, над токами и напряжениями в АВМ производятся «операции». Главными же составными частями АВМ являются усилители, коэффициенты передачи которых можно оперативно менять в процессе работы (с помощью перемычек и потенциометров). Именно эти усилители и получили вначале название «операционных».

Область применения ОУ в настоящее время существенно расширилась,

изменилась и технология их изготовления. Однако сохранилось главное преимущество – возможность быстро и без больших расходов изменять не только коэффициент передачи усилителя, но и вообще менять назначение и функцию электронной схемы. Как правило, общий усилитель используется в сочетании с двумя-тремя дополнительными элементами: сопротивлениями, емкостями, диодами и т. д. Характер подключения этих дополнительных элементов, как будет показано в данном разделе, определяет фундаментальные свойства образующейся электронной схемы. Изменение всего лишь одного элемента кардинально меняет функцию и назначение схемы.

Если ОУ выполнен в виде интегральной микросхемы, то он имеет особые обозначение и маркировку. Так, в принципиальных электрических схемах ОУ изображают в виде фигуры, приведенной на рис. 5.1. На рисунке слева изображены входы ОУ, справа – выход. Как видно, ОУ имеет два входа, различающиеся тем, как изменяется фаза сигнала при прохождении его через усилитель. Вход, при подаче сигнала на который сдвиг фазы со-ставляет 0°, называют неинвертирующим (на рис. 5.1 он имеет знак «+»). Второй вход ОУ называют инвертирующим, так как сигнал, поданный на него, приобретает в ОУ сдвиг фазы 180° (на рис. 5.1 вход отмечен «–»). Разумеется, говорить о сдвиге фаз можно лишь при передаче через ОУ гармонических сигналов; однако выбор входа влияет и на прохождение через операционный усилитель постоянных напряжений – такой сигнал сохраняет знак, если поступает на неинвертирующий вход, и меняет знак, если подается на инвертирующий вход.

На схемах рядом с фигурой, обозначающей ОУ, обычно ставят буквы DA, что соответствует аналоговой микросхеме (в отличие от цифровой, т. е. «дискретной» микросхемы, имеющей буквенное обозначение DD). Операционные усилители (микросхемы), выпускаемые промышленностью Российской Федерации, составляют серии (серия 140, серия 544 и т. д.); признаком того, что какая-то микросхема является ОУ, являются буквы УД (реже – УТ), например 140УД8А. Упрощенная структурная схема такого ОУ приведена на рис. 5.2. Как видно из рисунка, в схеме – четыре основных блока: дифференциальный усилитель ДУ (1), линейный усилитель ЛУ (2), усилитель-ограничитель УО (3) и эмиттерный повторитель ЭП (4). ДУ обеспечивает усиление разности двух сигналов, поступающих на неинвертирующий и инвертирующий входы ОУ (соответственно, и ). ЛУ состоит из нескольких усилительных каскадов и имеет огромный общий коэффициент усиления. Наличие УО позволяет использовать ОУ как преобразователь формы сигналов, расширяет сферу их применения. Оконечный блок ОУ – эмиттерный повторитель – выполняет функцию трансформатора сопротивлений и определяет значение выходного сопротивления ОУ Rвыx. Обычно Rвыx имеет порядок единиц килоом, у отдельных типов ОУ – сотни ом. Без ЭП значение Rвыx было бы больше: таким образом, благодаря наличию ЭП осуществляется защита ОУ от шунтирования низкоомной нагрузкой.

Структурная схема (рис. 5.2) является упрощенной и содержит лишь основные блоки ОУ. Наряду с ДУ, ЛУ, УО и ЭП типовая схема ОУ содержит блок согласования уровней постоянных напряжений (для обеспечения усиления постоянных сигналов), блок зашиты от коротких замыканий, а также цепи питания. Питание ОУ, как правило, двухполярное симметричное, т. е. используются два источника с напряжениями Е1 и Е2, причем Е1 = – E2.

Основные параметры и характеристики ОУ. Как у всякого усилителя, у ОУ важными параметрами являются амплитудная (передаточная) характеристика, коэффициент усиления, амплитудно-частотная характеристика (АЧХ), фазочастотная характеристика (ФЧХ), а также входное и выходное сопротивления. Очевидно, что поскольку у ОУ два входа, то каждый из перечисленных параметров, кроме Rвых, должен отдельно рассматриваться для случая, когда усиливаемый сигнал поступает на инвертирующий вход (при инвертирующем включении), и для случая, когда используется неинвертирующий вход (при неинвертирующем включении). Приведенный набор параметров характеризует усилитель в линейном режиме, т. е. при «малом» сигнале. Если при прохождении сигнала через ОУ его форма меняется из-за нелинейных искажений, то приходится пользоваться другими параметрами, описывающими выходной сигнал как импульс. Это – скорость нарастания выходного сигнала, амплитуда импульсов, форма фронта импульса, его длительность. Параметры ОУ при «малом» и «большом» сигналах тесно связаны, так как относятся к одному и тому же усилителю. Рассмотрим основные параметры и характеристики ОУ.

1. Передаточная характеристика ОУ – зависимость амплитуды выходного сигнала Uвых от амплитуды входного сигнала.

В электронике указанную зависимость гораздо чаше называют амплитудной характеристикой, однако применительно к ОУ используют специфическую терминологию. Возможно, разницей в терминологии стремятся под-

черкнуть различие в методиках измерения: в транзисторных и ламповых усилителях постоянный сигнал, как правило, не усиливается и амплитудную характеристику снимают при частоте сигнала f  0. Напротив, в ОУ передаточную характеристику стремятся измерить при f = 0. В силу последнего соображения передаточную характеристику измеряют при обеих полярностях Uвх.

Передаточные характеристики ОУ при нормальном режиме работы приведены на рис. 5.3. Здесь 1 – передаточная характеристика при подаче входного сигнала на неинвертирующий вход (Uвx =); 2– она же при подаче на инвертирующий вход (Uвx = ). Участок – Uвx. max < Uвx < < Uвx max соответствует линейному усилению, при |Uвx| > Uвx max возникают нелинейные искажения, сигнал ограничивается «сверху». Можно приближённо считать, что уровни ограничения равны +E и –Е, а Uвx .max = E/ К, где К – коэффициент усиления ОУ.

2. Коэффициент усиления ОУ К может быть определен по наклону линейного участка передаточной характеристики: он количественно равен тангенсу угла α (рис. 5.3). Отметим, что передаточные характеристики (рис. 5.3) являются качественными: с учетом реальных значений коэффициентов усиления передаточные характеристики промышленных образцов ОУ имеют почти вертикальные линейные участки.

3. Амплитудно-частотная характеристика. В операционных усилителях в подавляющем большинстве образцов обеспечивается идентичность свойств при инвертирующем и неинвертирующем включениях (например, коэффициенты усиления при обоих включениях равны по модулю). Идентичность свойств ОУ при разных включениях позволяет рассматривать не две, а одну единую АЧХ (а также ФЧХ). АЧХ типового ОУ приведена на рис. 5.4.

Снижение коэффициента усиления ОУ в области высоких частот обусловлено теми же причинами, что и у транзисторных усилителей: шунтирующим действием паразитных емкостей, инерционностью транзисторов в составе ОУ. Стремление потребителей иметь дело не с графиками, а с некоторыми количественными параметрами приводит к выбору характерных точек на АЧХ. В этом плане параметры ОУ отличаются от традиционных для остальной электроники. Так, при описании свойств ОУ вместо обычной верхней граничной частоты fв. гр, соответствующей усилению 0,7Кmax, выбирают частоту усиления «максимальной мощности» fУММ, при превышении которой начинается спад АЧХ, а также частоту «единичного усиления» fЕУ – такую частоту, при которой КU = 1. Иногда АЧХ представляют в логарифмическом масштабе: логарифмическая АЧХ (сокращенно – ЛАЧХ) обычно выражается в децибелах. При f = fЕУ ЛАЧХ пересекает ось частот.

4. Фазочастотная характеристика. Хотя при инвертирующем включении ОУ сдвиг фаз между входным и выходным сигналами должен быть равен 180°, а при неинвертирующем 0°, на самом деле, в реальных образцах

ОУ требуемые фазовые соотношения обеспечиваются не на всех частотах. При частотах, примерно соответствующих спаду АЧХ, наблюдается одновременно и изменение значения сдвига фаз. Особенно опасно, когда изменение значения сдвига фаз достигает 180°: инвертирующее включение превращается в неинвертирующее, и наоборот. При этом создаются условия для паразитного самовозбуждения усилителя.

5. Входные и выходные сопротивления. В силу идентичности свойств ОУ при инвертирующем и неинвертирующем включениях значения входных сопротивлений по обоим входам усилителя (соответственно, и ) практически одинаковы и составляют от сотен килоом до единиц-десятков мегаом (ОУ типа 140УД8А имеет даже Rвx = 10 9 Ом). Порядок значений Rвыx оговорен ранее: выходные сопротивления ОУ лежат в пределах от единиц килоом до сотен ом.

6. Скорость нарастания большого сигнала – параметр комплексный, охватывающий сразу и амплитуду импульсного сигнала на выходе ОУ, и длительность фронта. Так как речь идет о большом сигнале, который в процессе усиления приобретает амплитуду, близкую к Е (рис. 5.4), то, обозначив длительность фронта через τфр, для скорости и нарастания сигнала запишем  2Ефр. Значение тесно связано с частотными свойствами ОУ: это очевидно, так как τфр ~ 1/fв. гр, где fв. гр – верхняя граничная частота.

7. Форма и длительность фронта импульсов на выходе ОУ. Импульсы на выходе ОУ могут иметь как квазигармонический, так и апериодический фронты. В первом случае отдельно измеряют время нарастания tн и время установления tу. Очевидно, что τфр = tн + tу. Если фронт – апериодический, то tу = 0 и τфр = tн. Форма фронта характеризует склонность ОУ к паразитному самовозбуждению: при квазигармоническом фронте вероятность самовозбуждения выше, чем при апериодическом.

Недостатки операционных усилителей. Главными недостатками ОУ являются:

–снижение коэффициента усиления при подключении низкоомной нагрузки;

–смещение передаточной характеристики из начала координат (разбаланс);

–опасность паразитного самовозбуждения.

Рассмотрим эти явления и меры борьбы с ними.

1. Снижение коэффициента усиления при подключении нагрузки. Несмотря на то, что в состав ОУ входит эмиттерный повторитель и Rвых в результате этого снижено, все же оно остается достаточно большим: при подключении нагрузки с сопротивлением порядка единиц–десятков ом имеют место отрицательные явления: снижение коэффициента усиления и, одновременно, уровня максимального выходного сигнала.

Графически эти эффекты отражены на рис. 5.5: передаточная характеристика 1 соответствует режиму холостого хода (сопротивлению нагрузки Rн  ), характеристики 2 и 3 соответствуют нагрузкам с Rн2 > Rн3 .

Для того чтобы уменьшить отрицательные последствия рассматриваемого явления, применяют включение дополнительных повторителей, у которых RвыхRн.

Вместе с тем, отметим, что если вся сложная электронная схема строится из каскадов на основе ОУ, то в этом случае для каждого ОУ (кроме ОУ оконечного каскада) автоматически обеспечивается по нагрузке режим холостого хода: ведь нагрузкой ОУ является также операционный усилитель с Rвх, во много раз (на два-три порядка) превышающим Rвых. Таким образом, разработчики ОУ позаботились об объединении схем на их основе.

2. Смещение передаточной характеристики из начала координат (разбаланс). Наличие двух источников питания, причем с не всегда одинаковыми напряжениями, часто становится причиной смещения передаточной характеристики ОУ из начала координат. Это явление часто называют разбалансом. Возможны и другие причины возникновения разбаланса. Явление разбаланса иллюстрирует график рис. 5.6. Здесь напряжение разбаланса обозначено как ΔU.

Смещение передаточной характеристики от начала координат приводит к следующим негативным последствиям:

–к изменению уровня выходного сигнала при усилении постоянного сигнала;

–к появлению нежелательного «пьедестала» при усилении малого переменного сигнала;

– к возникновению нелинейных искажений при усилении переменного сигнал с амплитудой, близкой к Е/К.

Возможны и другие отрицательные последствия разбаланса: особенно опасен он в сумматорах постоянных сигналов, так как при этом возникает ошибка сложения.

Борьба с разбалансом сводится к компенсации напряжения ΔU. Если ОУ включен таким образом, что для подачи полезного сигнала используется лишь один вход, то для компенсации разбаланса можно второй вход отсоединить от земли и подать на него напряжение, равное по значению и обратное по знаку напряжению ΔU.

Рассмотрим этот метод подробнее. Как указано ранее, первым узлом ОУ является дифференциальный усилитель, работа которого описывается формулой Uвыx = КДУ(). Допустим, что используется неинвертирующее включение ОУ. В этом случае инвертирующий вход соединен с землей, = 0: Uвыx = КДУ. При возникновении разбаланса эта формула неверна и должна быть заменена другой: Uвыx = КДУ(– ΔU).

Отсюда видно, что «вернуться» к прямо пропорциональной зависимости Uвыx от можно при = – ΔU, т. е. Uвыx = КДУ(– ΔU) = = КДУ(– ΔU + ΔU) = КДУ .

Подачу компенсационного напряжения осуществляют обычно от источника питания через потенциометр; другой способ – использование входного тока Iвх самого ОУ. В последнем случае между неиспользуемым для подачи полезного сигнала входом ОУ и землей включают потенциометр (так называемое балансировочное сопротивление), падение напряжения на котором при протекании входного тока ОУ равно ΔU.

Схемы, реализующие два рассмотренных метода борьбы с разбалансом, приведены на рис. 5.7 (так как на практике чаще используется инвертирующее включение ОУ, то эти схемы также соответствуют инвертирующему включению). Следует заметить, что явление разбаланса – непостоянное, значение ΔU меняется под влиянием многих факторов, и поэтому режим ОУ надо регулярно контролировать и оперативно менять компенсационное напряжение.

3. Опасность паразитного самовозбуждения операционного усилителя. В схемах на основе ОУ существует опасность паразитного самовозбуждения, т. е. превращения схемы в автогенератор вопреки ee функциональному назначению. Такая опасность существует из-за двух причин: огромного значения коэффициента усиления ОУ и наличия паразитных емкостей, через которые может образовываться цепь положительной обратной связи. Из теории автогенераторов известно, что усилитель, охваченный цепью обратной связи, самовозбуждается при одновременном выполнении условий баланса амплитуд Кγ  1 и баланса фаз ΔφК + Δφγ = n  360°, n = 0, 1, 2, . где К и γ – соответственно, коэффициенты усиления усилителя и передачи цепи обратной связи; ΔφК и Δφγ – сдвиги фаз в усилителе и в цепи обратной связи.

При рассмотрении параметров ОУ было отмечено, что на высоких частотах происходит, с одной стороны, снижение К, а с другой – рост значения ΔφК. Если допустить, что значения γ и Δφγ от частоты не зависят, причем Δφγ = 0 (это справедливо для многих схем на основе ОУ), то на низких и средних частотах (где ΔφК = 180°, при инвертирующем включении ОУ) условие баланса фаз не выполняется и генерация не возникает. C увеличением частоты ΔφК возрастает и может достигнуть 360° и больших значений. Однако генерация возникает только в случае, когда на этих частотах выполняется условие баланса амплитуд, т. е. при К > 1/ γ .

Склонность схемы к паразитному самовозбуждению можно оценить тремя способами, которые иллюстрирует рис. 5.8. Рисунки справа соответствуют схеме с большей склонностью к самовозбуждению. Верхние графики отражают уровни шумов на выходе схемы, средние – форму выходных сигналов при подаче на вход усилителя прямоугольных импульсов, нижние – форму АЧХ усилителя.

Итак, для предотвращения паразитного самовозбуждения ОУ достаточно нарушить хотя бы одно из условий балансов амплитуд или фаз. Чаще всего это требование реализуется за счёт искусственного снижения К на частотах, где ΔφК достигает 360°.

Искусственное изменение свойств любого усилителя с помощью подключения дополнительных (в первую очередь, реактивных) элементов называется коррекцией. Цель коррекции может быть разной. В транзисторных усилителях ею пользуются обычно для поднятия коэффициента усиления, в том числе и на высоких частотах: у этих схем К намного ниже, чем у ОУ, и угроза паразитного самовозбуждения менее существенна. У схем на базе ОУ, напротив, с помощью коррекции, как правило, снижают коэффициент усиления в диапазоне частот, где имеется риск самовозбуждения.

Схемная реализация коррекции ОУ обычно такова: ею охватывают не

весь усилитель, а один или несколько каскадов – к специальным выводам микросхемы подключают один или несколько внешних элементов (конденсаторов, резисторов). Наиболее распространены однополюсная, двухполюсная коррекция, коррекции с фазовым опережением и с фазовым запаздыванием. Однополюсная коррекция заключается во включении параллельно части усилительных каскадов ОУ емкости СK (рис. 5.9). Эта емкость на высоких частотах шунтирует усилитель и снижает усиление ОУ.

Схема двухполюсной коррекции приведена на рис. 5.10, а: она состоит из двух конденсаторов С1 и С2 и резистора R3, причем С2  10С1. Действие схемы различно на разных частотах: при достаточно малых значениях частоты f сопротивление С2 велико и сигнал через цепь не проходит, никакого корректирующего воздействия схема не оказывает. С увеличением частоты сопротивление С1 уменьшается и цепь двухполюсной коррекции превращается в цепь однополюсной коррекции, причем функцию СK выполняет эквивалентная емкость Сэ = С1С2/(С1 + С2). Следовательно, можно считать, что схема

двухполюсной коррекции состоит из частотно-управляемого ключа и включаемой им схемы однополюсной коррекции. На рис. 5.10, б изображены амплитудно-частотные характеристики ОУ без коррекции (1), при использовании однополюсной (2) и двухполюсной (3) коррекций.

У вас большие запросы!

Точнее, от вашего браузера их поступает слишком много, и сервер VK забил тревогу.

Эта страница была загружена по HTTP, вместо безопасного HTTPS, а значит телепортации обратно не будет.
Обратитесь в поддержку сервиса.

Вы отключили сохранение Cookies, а они нужны, чтобы решить проблему.

Почему-то страница не получила всех данных, а без них она не работает.
Обратитесь в поддержку сервиса.

Вы вернётесь на предыдущую страницу через 5 секунд.
Вернуться назад

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *