Почему свет поперечная волна
Перейти к содержимому

Почему свет поперечная волна

  • автор:

2.3. Поляризация света

Поляризацией — называется преобразование света из естественного в плоскополяризованный. Поляризация присуща только поперечным волнам. Поляризацией — воздействие на световые или электромагнитные колебания, вследствие которого они происходят в определённом направлении, в определённой плоскости. Поляризатор – это оптическое устройство, способное превращать свет из естественного в плоскополяризованный.

2.3.1. Естественный и поляризованный свет

При изучении явлений интерференции и дифракции вопрос о том, являются световые волны продольными или поперечными, имел второстепенное значение. Там мы изучали способы оценки модуля вектора напряженности электрической составляющей электромагнитной волны. Здесь мы обсудим его направление.

Основное свойство электромагнитных волн – поперечность колебаний векторов напряжённости электрического и магнитного полей по отношению к направлению распространения волны (рис. 15).

Рисунок 15 – Изображение поперечности колебаний векторов и

В каждом отдельном случае (для каждого цуга волн) имеется та или иная ориентация векторов и в пространстве по отношению к распространению (направления луча). Такая асимметрия характерна только для поперечных волн. Продольная волна всегда симметрична относительно направления распространения.

Как правило, излучение естественных источников представляет собой пример электромагнитных волн со всевозможными равновероятностными ориентациями вектора , т.е. с неопределённым состоянием поляризации. Такой свет называют неполяризованным или естественным (рис. 15.1, а).

Рисунок 15.1 – Ориентации вектора

Свет с преимущественным (но не исключительным) направлением колебаний вектора называют частично поляризованным светом (рис. 15.1, б).

В природе существует обширный класс электромагнитных волн, в которых колебания электрического и магнитного полей совершаются в строго определённых направлениях. Такое свойство определяет состояние поляризации электромагнитной волны. Если вектор напряженности электрического поля электромагнитной волны колеблется вдоль некоторого направления в пространстве, говорят о линейной поляризации рассматриваемой электромагнитной волны (рис. 15.1, в). Электромагнитная волна в этом случае называется полностью поляризованной.

Из уравнений Максвелла следует существование полностью поляризованных электромагнитных волн, у которых по мере распространения волны векторы напряжённости электрического и магнитного полей изменяются таким образом, что траектория их движения в плоскости, поперечной направлению распространения волны, представляет собой эллипс или окружность. В этом случае говорят, соответственно, об эллиптической, или круговой, поляризации электромагнитной волны (рис. 15.2, а, б).

Рисунок 15.2 – Виды поляризации света (а – эллиптическая, б – круговая)

Пространственную структуру эллиптически поляризованных волн поясняет (рис. 15.3)

Рисунок 15.3 – Пространственная структура эллиптически поляризованных волн

Винтовая линия, изображенная на этом рисунке, есть геометрическое место концов вектора , относящихся к различным значениям z в один и тот же момент времени t. Шаг винта равен длине волны l. С изменением t эта винтовая линия, не деформируясь, перемещается со скоростью света в направлении распространения волны. При этом мы получим поле , вращающееся по часовой стрелке (если смотреть навстречу волне).

Как показывает опыт, реальные световые волны во многих случаях можно описывать с помощью рассмотренных выше моделей эллиптически поляризованных волн. При распространении электромагнитной волны в реальных средах возможно превращение неполяризованных волн в полностью поляризованные и наоборот. Примером такого превращения является поляризация электромагнитной волны при отражении.

Другой практически важный способ поляризации электромагнитных волн, в частности световых волн, представляет рассматриваемое в этой теме распространение электромагнитных волн в оптически анизотропных средах. Естественно, что инструментом для исследования асимметрии поперечных волн может служить система, сама являющаяся асимметричной. Газ, жидкость, твердые аморфные тела изотропны. Асимметрией обладают кристаллические тела. Их свойства могут различаться в различных направлениях. Они анизотропны. Отсюда следует, что асимметрию поперечных световых лучей можно изучать, пропуская свет через анизотропные кристаллы.

Устройства, позволяющие получать линейно поляризованный свет, называют поляризаторами. Когда те же самые приборы используют для анализа поляризации света, их называют анализаторами. Через такие устройства проходит только та часть волны, у которой вектор колеблется в определенном направлении. Это направление называют главной плоскостью поляризатора (анализатора).

Пусть естественный свет падает на кристалл поляризатора Р (рис. 15.4).

Рисунок 15.4 – Схема работы поляризатора

После прохождения поляризатора, он будет линейно поляризован в направлении. Интенсивность света при этом уменьшится на половину. Это объясняется тем, что при случайных ориентациях вектора все направления равновероятны. Если вращать поляризатор вокруг светового луча, то никаких особых изменений не произойдет. Если же на пути луча поставить еще и второй кристалл – анализатор A, то интенсивность света будет изменяться в зависимости от того, как ориентированы друг относительно друга обе пластины. Интенсивность света будет максимальна, если оси обоих кристаллов параллельны, и равна нулю, если оси перпендикулярны друг другу.

Все это можно объяснить следующим образом:

световые волны поперечны, однако в естественном свете нет преимущественного направления колебаний;

кристалл поляризатора пропускает лишь те волны, вектор которых имеет составляющую, параллельную оси кристалла (именно поэтому поляризатор ослабляет свет в два раза);

кристалл анализатора, в свою очередь, пропускает свет, когда его ось параллельна оси поляризатора.

§6. Поперечность световых волн. Поляризация света.

Явления интерференции и дифракции света подтверждают его волновую природу. В начале XIX века, Т. Юнг и О. Френель создав волновую теорию света, считали световые волны продольными, т.е. подобными звуковым волнам. Для этого им пришлось ввести некую гипотетическую среду, названную эфиром, в которой и происходило распространение продольных световых волн. В то время казалось невероятным, что свет – это поперечные волны, так как по аналогии с механическими волнами пришлось бы предполагать, что эфир – это твердое тело (поперечные механические волны не могут распространяться в газообразной или жидкой среде). Однако уже в то время существовали факты, противоречащие продольности световых волн.

Еще в средние века моряки привозили из Исландии необычные прозрачные камни, которые позже назвали исландским шпатом. Необычность их заключалась в том, что если кусочек исландского шпата положить на какую-либо надпись, то сквозь него надпись будет видеться раздвоенной.

В 1669 году датский ученый Бартолин сообщил интересные результаты своих опытов с кристаллами исландского шпата. При прохождении сквозь такой кристалл луч расщепляется на два (рис. 2.6.1). Эти лучи получили названия обыкновенный луч и необыкновенный луч, а само явление  двойное лучепреломление.

Обыкновенный луч подчиняется обычному закону преломления, а необыкновенный луч не подчиняется этому закону. Лучи раздваивались даже при их нормальном падении на кристалл исландского шпата. Если кристалл поворачивать относительно направления первоначального луча, то поворачиваются оба луча, прошедшие сквозь кристалл. Бартолин обнаружил также, что в кристалле существует некоторое направление, вдоль которого падающий луч не раздваивается. Однако объяснения этим явлениям он дать не мог.

Несколько лет спустя это открытие Бартолина привлекло к себе внимание Гюйгенса, который вводит понятие оптической оси кристалла (Бартолин фактически ее открыл).

Оптической осью кристалла называется выделенное направление в кристалле, вдоль которого обыкновенный и необыкновенный лучи распространяются не разделяясь.

В 1809 году французский инженер Э. Малюс провел опыт с кристаллами турмалина (прозрачными кристаллами зеленоватой окраски). В этом опыте свет последовательно пропускался через две одинаковые пластинки из турмалина. Если вторую пластинку поворачивать относительно первой, то интенсивность света, прошедшего через вторую пластинку изменялась от максимального значения до нуля (рис. 2.6.2). Зависимость интенсивности света I от угла между оптическими осями обеих пластинок имеет вид:

(закон Малюса), (2.6.1)

где I0 – интенсивность падающего света.

Рис. 2.6.3 а. Рис. 2.6.3 б.

Ни двойное лучепреломление, ни закон Малюса не могут найти объяснение в рамках теории продольных световых волн. Для продольных волн направление распространения луча является осью симметрии. В продольной волне все направления в плоскости, перпендикулярной лучу, равноправны.

Чтобы понять, как ведет себя поперечная волна, рассмотрим волну, бегущую по шнуру в вертикальной плоскости. Если на пути этой волны поставить ящик с вертикальной щелью (рис. 2.6.3 а), то волна свободно проходит через щель. В случае если щель в ящике расположена горизонтально, то волна сквозь нее уже не проходит (рис. 2.6.3 б). Такая волна называется также плоско-поляризованной, т.к. колебания в ней происходят в одной (вертикальной) плоскости.

Опыты с кристаллами исландского шпата и турмалина позволили доказать, что световая волна является поперечной. Впервые догадку о поперечности световых волн высказал Т. Юнг (1816 г.). Френель, независимо от Юнга, также выдвинул концепцию поперечности световых волн, обосновал ее многочисленными экспериментами и создал теорию двойного лучепреломления света в кристаллах.

В середине 60-х годов XIX века Максвелл пришел к выводу о том, что свет – это электромагнитная волна. Этот вывод был сделан на основе совпадения скорости распространения электромагнитных волн, которая получается из теории Максвелла, с известным значением скорости света. К тому времени, когда Максвелл сделал вывод о существовании электромагнитных волн, поперечность световых волн уже была доказано экспериментально. Поэтому Максвелл полагал, что поперечность электромагнитных волн является еще одним важнейшим доказательством электромагнитной природы света.

В электромагнитной теории света исчезли также затруднения, связанные с необходимостью введения особой среды распространения волн – эфира, который приходилось рассматривать как твердое тело.

В электромагнитной волне вектора и перпендикулярны друг другу и лежат в плоскости, перпендикулярной направлению распространения волны. Принято плоскость, в которой колеблется вектор , называть плоскостью колебаний, а плоскость, в которой происходят колебания вектора , плоскостью поляризации. Поскольку во всех процессах взаимодействия света с веществом основную роль играет вектор напряженности электрического поля , то его называют световым вектором. Если при распространении электромагнитной волны световой вектор сохраняет свою ориентацию, такая волна называется линейно-поляризованной или плоско-поляризованной.

Линейно-поляризованный свет испускается лазерами. Однако, свет, испускаемый обычными источниками (например, солнечный свет, излучение ламп накаливания и т. п.), не поляризован. Это связано с тем, что атомы излучают свет отдельным цугами независимо друг от друга. В результате чего вектор в результирующей световой волне беспорядочно изменяет свою ориентацию во времени, так что в среднем все направления колебаний оказываются равноправными.

Световая волна, у которой направления колебаний светового вектора, хаотически меняются во времени, называется естественным или неполяризованным светом.

Естественный свет, пройдя через кристалл исландского шпата или турмалина, поляризуется. Явление двойного лучепреломления света объясняется тем, что во многих кристаллических веществах показатели преломления для двух взаимно перпендикулярно поляризованных волн различны. Поэтому кристалл раздваивает проходящие через него лучи (рис. 2.6.1). Два луча на выходе кристалла линейно поляризованы во взаимно перпендикулярных направлениях. Кристаллы, в которых происходит двойное лучепреломление, называются анизотропными.

Свет может оказаться поляризованным при отражении или рассеянии. В частности, голубой свет неба частично или полностью поляризован. Поляризация отраженного света впервые наблюдалась Малюсом, когда он смотрел сквозь кристалл исландского шпата на отражение заходящего солнца в окнах Люксембургского дворца в Париже. Малюс установил, что отраженный свет в той или иной степени поляризован. Степень поляризации отраженного пучка зависит от угла падения: при нормальном падении отраженный свет полностью не поляризован, а при падении под углом, который называется углом полной поляризации или углом Брюстера, отраженный луч поляризован на все 100 %. При отражении под углом Брюстера отраженный и преломленный лучи перпендикулярны между собой (рис. 2.5.4). Отраженный луч плоско-поляризован параллельно поверхности.

Т.к. , и , то угол Брюстера находится по формуле .

Поляризованный свет широко используется во многих областях техники (например, для плавной регулировки света, при исследовании упругих напряжений и т.д.). Человеческий глаз не различает поляризацию света, а глаза некоторых насекомых, например, пчел, воспринимают ее.

54. Поперечность световых волн. Поляризация света. Электромагнитная природа света.

Поперечная волна называется плоскополяризованной, когда колебания во всех её точках, расположенных на одном луче, происходят в одной плоскости.

Опыты со световым излучением показали, что

1)световое излучение является поперечными волнами,

2)у естественного луча света колебания в плоскости, перпендикулярной к лучу, происходят по всем направлениям и ни одно из них не имеет преимущества перед другими.

Вещества, вызывающие вращение плоскости поляризации луча, называют оптически активными.

Закон Брюстера: тангенс угла падения (iБ) при полной поляризации отраженного луча равен показателю преломления.

Поперечность световых волн выражается в том, что колеблющиеся в них векторы напряжённости электрического поля и напряжённости магнитного поля перпендикулярны направлению распространения волны.

Поляризация — для электромагнитных волн это явление направленного колебания векторов напряженности электрического поля E или напряженности магнитного поля H. Когерентное[источник не указан 298 дней] электромагнитное излучение может иметь:

Линейную поляризацию — в направлении, перпендикулярном направлению распространения волны;

Круговую поляризацию — правую либо левую, в зависимости от направления вращения вектора индукции;

Эллиптическую поляризацию — случай, промежуточный между круговой и линейными поляризациями

Электромагнитная природа света была подтверждена в опытах Герца, показавшего, что электромагнитные волны, подобно свету на границе раздела двух сред, испытывают отражение и преломление.

55. Элементы теории относительности. Постулаты теории относительности.

Никакими механическими опытами нельзя установить, покоится инерциальная система отсчета или движется равномерно и прямолинейно. Иначе говоря, законы механики имеют один и тот же вид во всех инерциальных системах.

1.Принцип постоянства скорости света:

Скорость света в вакууме одинакова по всем направлениям во всех инерциальных системах отсчета. Она не зависит от движения источника света или наблюдателя.

Никакими физическими опытами (механическими, электрическими, оптическими), произведенными в какой-либо инерциальной системе отсчета, не возможно установить, покоится эта система или движется равномерно и прямолинейно. Физические законы совершенно одинаковы во всех инерциальных системах отсчета.

Теорию, созданную Эйнштейном на основе этих постулатов, принято называть специальной теорией относительности.

56. Относительность одновременности

Согласно теории относительности в каждой из инерциальных систем, находящихся в относительном движении, существует собственное время системы, которое показывают часы, покоящиеся в этой системе. Следовательно при определении времени событий в различных инерциальных системах события, одновременные в одной системе, могут оказаться неодновременными в другой системе отсчета. Другими словами, не существует абсолютной одновременности.

Поляризация света

Начало XIX века для физики ознаменовалось развитием волновой теории света, которым занимались ученые Т. Юнг и О. Френель. В то время природа световых волн оставалась неизвестной. Изначально предполагалось, что свет является распространяющимися в некоторой гипотетической среде – эфире продольными волнами. Однако в процессе изучения явлений дифракции и интерференции вопрос о том, продольные или поперечные световые волны, стал второстепенен. На тот момент казалось невозможным, что свет – это поперечные волны, по той причине, что по аналогии с механическими волнами пришлось бы признать эфир твердым телом, ведь поперечные механические волны не обладают возможностью распространяться в газообразной или же жидкой среде.

Несмотря ни на что, постепенно копились свидетельствующие в пользу поперечности световых волн экспериментально полученные факты.

Поляризация света

Поляризация света

Поляризация света

Двойное лучепреломление точно также, как и закон Малюса не может быть объяснено с точки зрения теории продольных волн. Для продольных волн направление распространения луча представляет собой ось симметрии. В них любые направления в плоскости, нормальной, то есть перпендикулярной, лучу, равноправны.

Выходит, что асимметрия относительно направления распространения луча – это решающий признак, отличающий поперечную и продольную волны. Первым высказал догадку о поперечности световых волн Т. Юнг в 1816 году. Независимо от Юнга Френель тоже выдвинул концепцию поперечности световых волн, и даже смог обосновать ее с помощью большого количества опытов. Им была создана теория двойного лучепреломления света в кристаллах.

В середине 60 -х годов XIX века Максвелл, взяв за основу совпадение известных значений скоростей распространения света и электромагнитных волн, сделал вывод о природе света. Ученый решил, что свет – это частный случай электромагнитных волн. К тому времени экспериментальным путем была подтверждена поперечность световых волн. По этой причине Максвелл предположил, что она является еще одним важным аргументом в пользу его выводов насчет электромагнитной природы света.

Пропала необходимость во введении особой среды распространения волн – эфира, который приходилось рассматривать как твердое тело. Благодаря этому электромагнитная теория света приобрела должную стройность.

В условиях электромагнитной волны вектора E → и B → направлены перпендикулярно друг к другу и находятся в плоскости, которая перпендикулярна направлению распространения волны плоскости. (рис. 2 . 6 . 3 )

Поляризация света

Рисунок 2 . 6 . 3 . Синусоидальная (гармоническая) электромагнитная волна. Векторы E → , B → и υ → взаимно перпендикулярны.

Виды поляризации света

Его размер и форма характеризуются амплитудами a x и a y линейно поляризованных волн и фазовым сдвигом Δ φ между ними.

Виды поляризации света

В любой момент времени вектор E → может быть спроецирован на две взаимно перпендикулярные оси (смотри рисунок 3 . 11 . 6 ).

Виды поляризации света

Рисунок 3 . 11 . 6 . Разложение вектора E → по осям О х и О у .

Это значит, что любую волну, вне зависимости от того, поляризованная она или же нет, можно представить в виде суперпозиции двух линейно поляризованных во взаимно перпендикулярных направлениях волн: E → ( t ) = E x → ( t ) + E y → ( t ) . В поляризованной волне обе составляющие E x ( t ) и E y ( t ) когерентны, то есть разность фаз между E x ( t ) и E y ( t ) не претерпевает изменений, а в неполяризованной – некогерентны, значит разность фаз представляет собой случайную функцию времени.

Явление двойного лучепреломления света основывается на том, что в кристаллических веществах показатели преломления линейно поляризованных во взаимно нормальных направлениях волн, зачастую различны. По данной причине кристалл раздваивает лучи, которые проходят сквозь него так, как это показано на рисунке 3 . 11 . 1 . Два луча на выходе кристалла линейно поляризованы во взаимно перпендикулярных направлениях.

Виды поляризации света

Виды поляризации света

Рисунок 3 . 11 . 8 . Модель поляризации света.

Рисунок 3 . 11 . 9 . Модель закона Малюса.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *