Устройство и принцип работы индукционного трехфазного электросчетчика.
И ндукционный трех фазный электросчетчик работает по томуже принципу что и однофазный. В индукционной системы подвижная часть (диск) вращается во время потребления электроэнергии. Диск вращается за счёт вихревых токов, наводимых в нём магнитным полем катушек счётчика, магнитное поле вихревых токов взаимодействует с магнитными полями катушек счётчика. Один из трех элементов счетчика содержит два электромагнита; обмотка одного включена в сеть последовательно (токовая обмотка), другого – параллельно (обмотка напряжения). Между этими электромагнитами расположен вращающийся алюминиевый диск, его ось которого соединена со счетным механизмом счётчика, а также со вторым диском, на котором установлено еще два (на две фазы) элемента. Третий диск отсутствует, ради экономии. Протекающие по обмоткам электромагнитов токи создают магнитные потоки. Под действием которых у диска появляется вращающий момент. Чем больше расходуется электроэнергии, тем больший ток в контролируемой цепи и в токовой обмотке счётчика и тем больше момент и скорость вращения диска. Трёхфазные электросчетчики на напряжение 380 В применяются в основном для учёта электроэнергии на подстанциях, предприятиях и т. п.
Устройство и принцип работы гибридного электромеханического счетчика.
Гибридный счетчики электроэнергии необходимо разделять на несколько разных узлов: схема счетчика, блок питания, корректирующие цепи и т. д. Блок питания преобразует переменное входное напряжение в низкое постоянное и обеспечивает питание электронных цепей счетчика. Схема счетчика измеряет ток, который потребляется нагрузкой, с помощью трансформатора тока (датчика), через который и протекает измеряемый ток. Другие блоки счетчика электроэнергии выполняют ряд различных функций: вывод показаний и управление через Ethernet, WiMax, Wi-Fi, ZeegBee сети, управление дисплеем, термокомпенсация счетчика, коррекция точности, и т. п. Счетчик состоит из микросхемы обработки, трех трансформаторов тока, цепи питания, электромеханического счетного устройства и дополнительных цепей. В качестве регистра электроэнергии используется простое электромеханическое отсчетное устройство, в котором применен двухфазный шаговый двигатель. Электропитание счетчика обеспечивает источник, построенный на токовом трансформаторе и двухполупериодном выпрямителе.
Устройство и принцип работы электронного (цифрового) счетчика.
До недавнего времени вопрос измерения электроэнергии, сводился к применению электромеханических счётчиков, принцип работы основан на подсчёте оборотов металлического диска, вращающегося в переменном магнитном поле, которое, создаётся двумя электромагнитами. Магнитный поток должен быть пропорционален току, текущему через нагрузку, а второго — напряжению. При этом скорость вращения диска пропорциональна мощности, а количество оборотов — потребляемой энергии.
Развитие микроэлектроники наметило переворот в области создания промышленных и бытовых систем учета, который, в первую очередь, связан с использованием систем управления на базе микроконтроллеров.
В цифровых системах учета достижим практически любой класс точности, при выборе соответствующей элементной базы и алгоритмов обработки информации. Отсутствие механических частей значительно повышает надёжность.
Обработка информации в цифровом виде позволяет одновременно подсчитывать как активную, так и реактивную составляющие мощности, это является важным, например, при учёте энергии в трёхфазных сетях.
Появляется возможность создания многотарифных электросчётчиков. При работе такого системе учета значение накопленной энергии записывается в буфер текущего тарифа. Выбор тарифа осуществляется автоматически. Например, “льготный” тариф может быть установлен на одно время, “пиковый” тариф — “штрафной” тариф, во второе, а в остальное время будет действовать “основной” тариф.
В простейшем случае цифровой системы учета, когда требуется лишь измерение импульсов, вывод информации на дисплей и защита при аварийных сбоях (как, фактически, цифрового аналога механических счётчиков), система может быть построена, на базе простейшего микроконтроллера.
Блок-схема такого счетчика электроэнергии представлена на рисунке. Сигналы, поступают через соответствующие трансформаторные датчики на входы микросхемы-преобразователя. С её выхода снимается частотный сигнал, поступающий на вход микроконтроллера. Микроконтроллер складывает количество пришедших импульсов, преобразовывая его для получения количества энергии в Вт·ч. По мере накопления каждой единицы, значение накопленной энергии выводится на монитор и записывается во FLASH-память. Если происходит сбой, исчезновение напряжения сети, информация о накопленной энергии сохраняется в памяти. После восстановления напряжения эта информация считывается микроконтроллером и выводится на индикатор, счёт продолжается с этой величины. Этот алгоритм потребовал менее 1 Кбайт памяти микроконтроллера. В качестве дисплея может использоваться простейший 6-. 8-разрядный 7-сегментный ЖКИ, управляемый контроллером.
В случае реализации многотарифного электросчетчика, устройство должно обеспечивать обмен информацией с внешним миром по п оследовательному интерфейсу. Интерфейс может использоваться для задания тарифов, включения и установки таймера времени, получения информации о накопленных значениях электроэнергии и так далее. . Блок-схема такого устройства, реализованного на микроконтроллере фирмы Motorola представлена на рисунке.
Рассмотрим алгоритм работы электросчётчика. Память энергонезависимого ОЗУ разбита на 13 банков, в каждом хранится информация о накопленной электроэнергии по четырём тарифам: общем, льготном, пиковом, штрафном. В первом банке учет производятся с момента начала эксплуатации электросчётчика, следующие 12 банков соответствуют накоплениям за 11 предыдущих и за текущий месяцы. Учет за текущий месяц записываются в соответствующий банк, таким образом, имеется возможность узнать, сколько было накоплено энергии за любой из 11 последних месяцев. Перед началом работы счётчика на заводе-изготовителе обнуляют содержимое банков памяти, и накопление начинается с нулевых значений.
Смена тарифов осуществляется по временным условиям: для каждого дня недели свое тарифное расписание, то есть времена начала основного и льготного тарифов — для пикового тарифа. 16 произвольных дней в году могут быть определены как праздничные, в эти дни работает тарифное расписание как для воскресенья.
В электросчётчике может быть установлен режим ограничения по количеству израсходованной за месяц энергии и по мощности. В тех режимах счётчик фиксирует количество электроэнергии, израсходованной выше лимита. При превышении установленного лимита электроэнергии производится или переход на накопление по штрафному тарифу, или отключение пользователя от энергосети. Штрафной тариф может быть установлен принудительно (по интерфейсу связи) в случае, например, задолженности.
При включении счётчика в сеть (например, после очередного пропадания напряжения в сети) фиксируется время и дата момента для возможности контроля. Также предусмотрена запись даты несанкционированного снятия крышки счетчика.
Через особый разъём к счётчику можно подключить ридер для считывания информации с индивидуальной электронной карточки о объеме энергии, оплаченном потребителем. При исчерпании лимита счётчик может отключить потребителя от электросети.
Устройство и принцип работы однофазного индукционного счётчика
Счетчик представляет собой измерительную ваттметровую систему и является интегрирующим (суммирующим) электроизмерительным прибором. Принцип действия индукционных приборов основан на взаимодействии переменных магнитных потоков с токами, индуктированными ими в подвижной части прибора (в диске). Электромеханические силы взаимодействия вызывают движение подвижной части. Схематическое устройство однофазного счетчика представлено на рисунке 8.
Основными его узлами являются электромагниты 1 и 2, алюминиевый диск 3, укрепленный на оси 4, опоры оси — подпятник 5 и подшипник 6, постоянный магнит 7. С осью связан при помощи зубчатой передачи 8 счетный механизм (на рисунке не показан), 9 — противополюс электромагнита 1. Электромагнит 1 содержит Ш — образный магнитопровод, на среднем стержне которого расположена многовитковая обмотка из тонкого провода, включенная на напряжение сети U параллельно нагрузке Н. Эта обмотка в соответствии со схемой включения называется параллельной обмоткой или обмоткой напряжения. При номинальном напряжении 220 В параллельная обмотка имеет обычно 8-12 тысяч витков провода диаметром 0,1 — 0,15 мм. Электромагнит 2 расположен под магнитной системой цепи напряжения и содержит U — образный магнитопровод, с расположенной на нем обмоткой из толстого провода с малым количеством витков. Данная обмотка включена последовательно с нагрузкой и поэтому называется последовательной или токовой обмоткой. Через нее протекает полный ток нагрузки. Обычно количество ампервитков этой обмотки находится в пределах 70 — 150, т.е. при номинальном токе 5 А обмотка содержит от 14 до 30 витков. Комплекс деталей, состоящий из последовательной и параллельной обмоток с их магнитопроводами, называется вращающим элементом счетчика.
Рисунок 8 – Устройство однофазного индукционного счетчика
Ток, протекающий по обмотке напряжения, создает общий переменный магнитный поток цепи напряжения, небольшая часть которого (рабочий поток) пересекает алюминиевый диск, находящийся в зазоре между обоими электромагнитами. Большая часть магнитного потока цепи напряжения замыкается через шунты и боковые стержни магнитопровода (нерабочий поток), который разделяется на две части и необходим для создания требуемого угла сдвига фаз между магнитными потоками цепи напряжения и цепи нагрузки (токовой цепи). Магнитный поток цепи напряжения прямо пропорционален приложенному напряжению (напряжению сети).
Ток нагрузки, протекающий через токовую обмотку, создает переменный магнитный поток, который также пересекает алюминиевый диск и замыкается по магнитному шунту верхнего магнитопровода и частично через боковые стержни. Незначительная часть (нерабочий поток) замыкается через противополюс, на пересекая диск. Так как магнитопровод токовой обмотки имеет U-образную конструкцию, то его магнитный поток пересекает диск дважды.
Таким образом, всего через диск счетчика проходят три переменных магнитных потока. Согласно закону электромагнитной индукции, переменные магнитные потоки обеих обмоток при пересечении диска наводят в нем две ЭДС, под действием которых в диске вокруг следов этих потоков протекают соответствующие вихревые токи (правило “буравчика”). В результате взаимодействия магнитного потока обмотки напряжения и вихревого тока от магнитного потока токовой обмотки и с другой стороны магнитного потока токовой обмотки и вихревого тока от обмотки напряжения, возникает электромеханические силы, которые создают вращающий момент, действующий на диск. Этот момент пропорционален произведению указанных магнитных потоков и синусу угла сдвига фаз между ними.
Активная мощность потребляемая нагрузкой определяется как произведение силы тока на приложенное напряжение и на косинус угла между ними. Так как магнитные потоки обоих обмоток пропорциональны напряжению и току, то можно, добившись конструктивным путем равенства синуса угла между потоками и косинуса угла между вектором тока и напряжения, осуществить пропорциональность вращающего момента счетчика с коэффициентом измеряемой активной мощности. Синус одного угла равен косинусу другого угла, если между ними сдвиг 90° , что и достигают в конструкциях счетчиков (применение короткозамкнутых витков, дополнительных обмоток замкнутых на регулируемое сопротивление, перемещение винтового зажима и т.д.). Вращающий момент пропорциональный мощности сети приводит диск счетчика во вращение, частота вращения которого стабилизируется, когда вращающий момент уравновешивается тормозным моментом. Для создания тормозного момента в счетчике имеется постоянный магнит, который своими полюсами охватывает диск. Силовые линии магнитного поля, пересекая диск, наводят в нем дополнительную ЭДС, пропорциональную частоте вращения диска. Эта ЭДС в свою очередь вызывает протекание в диске вихревого тока, взаимодействие которого с потоком постоянного магнита приводит к возникновению электромеханической силы, направленной против движения диска, т.е. приводит к созданию тормозного момента. Регулировку тормозного момента, а следовательно частоты вращения диска производят путем перемещения постоянного магнита в радиальном направлении. При приближении магнита к центру диска, частота вращения уменьшается.
Таким образом, добившись постоянной частоты вращения диска счетчика, получаем, что измеряемое счетчиком количество энергии определяется как произведение числа оборотов диска счетчика на коэффициент пропорциональности С (постоянная счетчика).
11 4.4. Индукционные приборы. Однофазный индукционный счётчик электрической энергии
Принцип действия индукционных приборов основан на взаимодействии переменного магнитного поля с вихревыми токами, индуцируемыми этим же полем в проводящем подвижном диске или цилиндре. Индукционные приборы пригодны лишь для переменных токов, так как ток в диске или цилиндре может индуцироваться лишь действием переменного магнитного потока. В настоящее время промышленность выпускает только индукционные счетчики электрической энергии.
Рис. 11.6. Схема навивки токовой катушки индукционного прибора
Индукционный счетчик имеет две катушки с сердечниками: токовую катушку и катушку напряжения. Поэтому переменное магнитное поле создается двумя магнитными потоками Ф1 и Ф2 сдвинутыми на некоторый угол по фазе и в пространстве. При этом осуществляется взаимодействие потоков с »чужими», (а не со «своими») индукционными токами.
Токовую катушку (рис. 11.6) навивают толстым проводом на стальной сердечник и включают последовательно с нагрузкой. Магнитный поток Ф1 в ней пропорционален току нагрузки. Катушку напряжения (рис. 11.7) навивают большим числом витков тонкого провода на стальной сердечник. Индуктивное сопротивление этого электромагнита несравненно больше активного, поэтому данную цепь можно считать чисто индуктивной (ток в катушке напряжения отстает по фазе на π/2).
Рис. 11.7. Схема навивки катанки напряжения
Таким образом, счетчик состоит из двух электромагнитов и подвижного алюминиевого диска.
Легкий алюминиевый диск укреплен на оси, которая связана с помощью червячной передачи со счетным механизмом, и вращается в зазоре электромагнитов. Магнитный поток Ф1 электромагнита U-образной формы (рис. 11.6) создается током приемника электрической энергии, так как его обмотка включена последовательно в цепь нагрузки. Можно считать, что Ф1 пропорционален току:
На втором электромагните (рис. 11.7) расположена обмотка, включенная параллельно приемнику электрической энергии, и ток в ней пропорционален напряжению сети U. Обмотка состоит из большого числа витков тонкого провода и создает магнитный поток Ф2 значение которого пропорционально U: Ф2~U. Индуктивное сопротивление этого электромагнита несравненно больше активного, поэтому можно считать, что ток в его обмотке сдвинут по фазе от напряжения на π/2. Таким образом, магнитные потоки, сдвинутые по фазе и в пространстве, образуют «бегущее» магнитное поле, пересекающее диск.
Вихревые токи, индуцируемые в диске магнитными потоками, пропорциональны им: Iв1~Ф1 и Iв2~Ф2 . Среднее за период значение электромагнитной силы, возникающей при взаимодействии магнитного поля и вихревого тока и действующей на диск, определяется формулой
F = Ф I cosγ , где γ — угол сдвига по фазе между потоком Ф и током I . Из этой формулы видно, что взаимодействие между индуцированным током в диске и созданным им магнитным полем не создает электромагнитной силы, так как γ = 0. Электромагнитные силы появляются только в результате взаимодействия магнитного потока Ф1 с током Iв2 и потока Ф2 с током Iв1. Общий вращающий момент
где c1 и с2 — постоянные величины. После несложных преобразований получаем
где ψ — угол между потоками Ф1 и Ф2 равный, практически, π/2, с — постоянная величина. Поэтому
где k — постоянный коэффициент, Р — мощность, потребляемая нагрузкой.
Под действием этого вращающего момента диск пришел бы в ускоренное вращение, и число оборотов не соответствовало бы израсходованной электрической энергии. Поэтому необходимо наличие противодействующего момента.
Противодействующий момент Мпр создается постоянным магнитом, в поле которого вращается диск, и является тормозным моментом, пропорциональным частоте вращения диска Мпр=k’. Когда моменты равны, т.е. Мпр = Мвр, частота вращения диска постоянна (установившийся режим). При этом
P = .
Проинтегрировав это выражение за период T, получим
= .
Левая часть этого равенства определяет количество электрической энергии использованной за период, поэтому после интегрирования получаем:
W = 2 π N,
где N — число оборотов диска за период T. Таким образом, число оборотов диска пропорционально расходу электроэнергии.
Индукционные счетчики обладают слабой чувствительностью к введшим магнитным полям и изменениям температуры окружающей среды и хорошо выдерживают перегрузки. Однако они очень чувствительны к изменению частоты переменного тока в сети, поэтому предназначаются для работы только на определенной частоте (обычно 50 Гц).
Индукционный счетчик электроэнергии — варианты установки и снятие показаний
В последние годы индукционный счетчик электроэнергии активно вытесняется с рынка приборов учёта более современными и совершенными, элекртонными моделями.
Тем не менее, именно такие счётчики имеют достаточно большое количество преимуществ, благодаря которым до сих пор эксплуатируются отечественными потребителями во многих регионах нашей страны.
Плюсы и минусы
Механические приборы учёта относятся к категории надежных в эксплуатации электросчётчиков и выгодно отличаются продолжительным сроком службы.
Немаловажным преимуществом является также устойчивость к перепадам напряжения в электрической сети.
Стоимость индукционного прибора учёта на порядок ниже цены новомодных электронных счётчиков, поэтому такое устройство по-прежнему считается самым доступным для широкого круга отечественных потребителей.
Тем не менее, класс точнoсти у таких приборов достаточно низкий, и варьируется в пределах 2.0-2.5 единиц, а также практически полностью отсутствует защита от хищений электроэнергии.
Кроме всего прочего, к недостаткам можно отнести высокое энергопотребление самим прибором и значительный рост погрешности измерений в условиях малых нагрузок. Определенное неудобство в процессе эксплуатации создают и внушительные габариты самого механического электросчётчика.
Важно помнить, что при необходимости выполнять одновременный учет реактивной и активной электрической энергии, потребуется устанавливать сразу несколько электросчётчиков индукционного типа.
Принцип работы индукционного счетчика электроэнергии
Стандартное счетное устройство механического прибора учёта – вращающийся алюминиевый диск и специальные цифровые барабаны, которые отражают расход электрической энергии в режиме реального времени.
Принцип работы достаточно прост, и заключается во взаимодействии электромагнитного поля с диском, представляющим собой подвижный токовый проводник. Сохранение стабильной работоспособности индукционного электросчетчика возможно только в условия фазового сдвига, который должен быть равен девяносто градусам.
Устройство индукционного счетчика электроэнергии
Индукционные приборы имеют катушку напряжения и тока. При этом подключение токовой катушки производится только последовательно, а катушка на напряжение запитывается параллельно. В процессе работы обе катушки формируют электромагнитный поток, который у токовой катушки является неизменно пропорциональным силе тока, а у катушки напряжения – пропорционален напряжению в сети.
Закономерностью принципа работы электрического счётчика индукционного типа является наличие прямой пропорциональности потребляемой мощностью и скорости вращения счётного устройства в виде алюминиевого диска.
Установка
Трехфазные приборы заметно отличаются от однофазных электрических счётчиков, и способны функционировать в условиях значительной мощности электросети.
Однофазный прибор может эксплуатироваться при номинальной мощности не выше 10 кВт.
Трехфазные приборы учёта пригодны для использования в условиях номинальной мощности в 15 кВт и более.
Такие приборы учёта относятся к категории многофункциональных, поэтому применяются не только в бытовой сети, но и при выполнении контроля трехфазных двигателей.
Опломбировка счетчика — обязательное мероприятие для каждого потребителя электроэнергии. Как опломбировать счетчик электроэнергии — порядок действий описан в статье.
Инструкция по снятию показаний с электросчетчика приведена тут.
Несмотря на то что счетчик может работать многие годы, существуют нормативы, согласно которым через определенный промежуток времени после установки прибор нужно заменить. Каков срок эксплуатации электросчетчика, расскажем далее.
Однофазные
Самым простым вариантом является однофазное подключение, выполняемое посредством кабелей и нагрузки. Провода «заземление», «фаза» и «ноль» должны подключаться на вход электросчётчика и выход из прибора учёта. Перед электросчётчиком требуется установить устройство автоматического выключения, что сделает эксплуатацию максимально безопасной и удобной.
Конструкцией стандартного электросчетчика предусмотрено наличие шины, представленной обычной медной планкой. Фиксация планки осуществляется диэлектрическими зажимами. По всей длине проделаны отверстия, позволяющие легко подводить и надежно крепить все электрические кабели.
Схема подключения однофазного счетчика
Стандартная пошаговая схема самостоятельного подключения однофазного индукционного счётчика электроэнергии:
- установка и фиксация прибора учёта в щиток;
- установка выключателей на DIN-рейке и фиксация при помощи подпружиненной защелки;
- установка шин заземляющего и защитного типа на DIN-рейке или изоляторах щитка;
- подключение нагрузки на выключатели и последующее соединение автомата со счетчиком;
- подключение электросчётчика;
- подключение «фазы» на нижние зажимы выключателя, соединение нулевой шины с кабелем «ноль» и проводов заземления с заземляющей шиной;
- установка перемычек на зажимы;
- подключение электрического счетчика на нагрузку;
- отключение подачи электричества, соединение провода «ноль» с третьей клеммой прибора учёта и подключение кабеля «фаза» на первую клемму.
На заключительном этапе проверяется работоспособность установленного оборудования на минимальной и максимальной нагрузке.
Обязательно нужно обратиться в организацию энергосбыта для того, чтобы установленный самостоятельно прибор учёта электрической энергии был проверен, а затем опломбирован специалистами.
Трехфазные
Трехфазный прибор учёта расходуемой электроэнергии принято относить к категории более безопасных счётчиков, что обусловлено разделением потребителей на отдельные группы. Такой тип электросчетчика способен измерять не только активную, но и реактивную энергию с учётом потокового направления.
Схема подключения трехфазного счетчика через трансформаторы тока
Стандартная трёхфазная модель имеет восемь клемм, поэтому подключение осуществляется в следующем порядке:
- подключение общесетевых кабелей с одинаковой цветовой маркировкой на первую, третью, пятую и седьмую клеммы;
- подключение квартирных кабелей с одинаковой цветовой маркировкой на вторую, четвертую, шестую и восьмую клеммы.
В процессе самостоятельной установки в обязательном порядке должна соблюдаться схема, учитывающая подключение входных кабелей посредством четырёхполюсника от вводного автомата.
После выполнения установки, прибор учёта обязательно должен пломбироваться и ставиться на учет специалистами энергоснабжающей компании, которые фиксируют стартовые показания счетчика и выдают разрешение на эксплуатацию.
Тарифная система учета
Дифференцированный вариант системы учёта базируется на расходе электроэнергии в зависимости от временного интервала, что позволяет осуществлять оплату потребленного электричества по разным тарифам: дневному и ночному.
Следует отметить, что приборы учёта электроэнергии индукционного типа относятся к категории однотарифных, и не имеют системы дистанционного снятия показаний. Соответственно, оплата потребленного электричества при использовании такого прибора будет на порядок выше, чем расходы электроэнергии в условиях эксплуатации более современных многотарифных моделей.
Чтобы подобрать наиболее точный прибор учета электроэнергии, необходимо обратить внимание на коэффициент трансформации счетчика электроэнергии. Что это такое и как его рассчитать, читайте на нашем сайте.
О том, как снять показания с двухтарифного счетчика электроэнергии, читайте в этой теме.
Снятие показаний
Общие показатели расхода электрической энергии определяются на шкале значений всеми цифрами, расположенными до запятой. Последнее число, которое выделяется рамкой красного цвета, отображает десятые доли одного киловатта, и при выполнении расчётов не учитывается.
Чтобы самостоятельно опередить расход электроэнергии за один месяц, необходимо вычислить разницу между цифровыми данными текущего месяца и показаниями прибора учёта в предыдущем месяце.
Оплата счёта за израсходованное количество кВт осуществляется в соответствии с тарифами, которые устанавливаются в каждом регионе индивидуально.
Безусловно, индукционные счетчики имеют большой ресурс эксплуатации и на их работоспособность не оказывают влияния как скачки напряжения в сети, так и качество передаваемого тока, но сэкономить на оплате электроэнергии за счёт многотарифной системы расчёта, увы, не получится.