В чем отличие аналоговых измерительных приборов от цифровых
Перейти к содержимому

В чем отличие аналоговых измерительных приборов от цифровых

  • автор:

2.3.2 Аналоговые и цифровые средства измерений. Приборы для измерения электрических параметров

Приборы для электрических измерений можно условно разделить на два класса:

– приборы для измерения «активных» электрических величин (U, I, P, q, f и др.), действие которых основывается на непосредственном воздействии измеряемых величин на измерительное устройство и, как правило, сопровождается потреблением некоторого количества электрической энергии от объекта измерений;

– приборы для измерения «пассивных» электрических величин (R, L, C, Z и др.), для измерения которых необходимо применять внешние источники энергии, действующие на измеряемый объект и «заставляющие» его проявить свои свойства.

1. Аналоговые и цифровые приборы. По способу представления и переработки информации приборы можно разделить на аналоговые и цифровые.

Аналоговой называется такая функция А(х), значение которой изменяется непрерывным образом при непрерывном изменении аргумента х (рис. 17). Большинство физических величин являются непрерывными (например, напряжение U(t)), или принимаются таковыми в теоретической модели. Например ток I(t) физически является потоком дискретного числа частиц – электронов или ионов, но из-за слишком большого количества заряженных частиц, протекающих через проводник в единицу времени, и его случайного изменения ток считается непрерывной величиной. Это означает, что за величину тока мы принимаем некоторое статистически среднее, а среднее случайных дискретных величин само по себе может быть величиной непрерывной.

При передаче аналогового сигнала от одного устройства к другому в схеме измерения, представленной на рис. 1, сигнал может быть преобразован из аналоговой формы в цифровую. Такое преобразование основано на том, что аргумент каждой однозначной аналоговой функции A(x) можно разбить на интервалы и передавать ее значение средним значением An, соответствующим данному интервалу xn (рис. 17). Эта операция и будет переводом аналоговой величины в цифровую.

Точность перевода значения из аналоговой в цифровую форму определяется ценой наименьшего интервала и может быть сделана теоретически сколь угодно высокой.

Смысл преобразования сигналов из аналоговой формы в цифровую обусловлен целым рядом факторов, среди которых можно выделить: бульшую помехозащищенность передачи цифрового сигнала, более высокую скорость обработки цифровых сигналов по сравнению с аналоговыми, возможность компьютизированной обработки, передачи и хранения цифровой информации.

2. Основные типы измерительных приборов для измерения тока и напряжения. Для измерения токов и напряжений применяются электромеханические и электронные приборы.

В электромеханических приборах электрический сигнал непосредственно переводится в показания прибора (например, в движение стрелки вдоль шкалы прибора, которая прокалибрована в единицах измерения величины U или I).

В электронных приборах измеряемая величина сначала подвергается различным преобразованиям (например, усиливается, усредняется, переводится в цифровой код и т. д.), и лишь затем измеряется и регистрируется. Причем регистрация значения величины может осуществляться как с помощью приборов стрелочного (электромеханического) типа, так и в цифровой форме.

Измерения на постоянном и переменном токе.

Основные параметры переменного тока

Постоянный ток характеризуется только двумя параметрами – величиной тока (напряжения) и его направлением (полярностью). Переменный ток для своего описания требует введения целого ряда других параметров, число которых зависит от формы переменного тока. Мы будем пользоваться в своем описании главным образом гармоническими токами. Гармоническими называются периодические функции, значение которых изменяется с течением времени по закону синуса или косинуса. Они могут быть записаны в форме:

или х = Acos (ωt + ϕ),

где х – значение колеблющейся величины в данный момент времени t (для механических величин, например, смещение или скорость, для электрических – напряжение или сила тока), А – амплитуда колебаний, ω – угловая частота колебаний, (ω + ϕ) – фаза колебаний, ϕ – начальная фаза колебаний. В технической литературе наряду с термином «гармонические величины» часто в качестве синонима используется термин «синусоидальные величины». Главенствующая роль гармонических сигналов определяется двумя факторами:

1) они наиболее часто используются на практике,

2) любой периодический импульсный ток, какой бы сложной ни была форма импульсов, можно разложить в спектр Фурье, т. е. представить в виде суммы синусоидальных сигналов различной частоты и фазы. А затем « отслеживать», как данная цепь откликается на каждую составляющую спектра.

Рис. 12. I(t) = I0·sin(ωt + φ)

Примечание: последнее утверждение полностью справедливо только для линейных цепей, для цепей с нелинейными элементами разложением в ряд Фурье нужно пользоваться с осторожностью. Форма синусоидального тока представлена на рис. 12. Его основными параметрами являются амплитуда I0, частота (линейная f и круговая ω = 2πf), начальная фаза φ, полная фаза (ωt + φ), период колебания Т. Основные соотношения для этих величин:

Кроме амплитуды, переменный ток характеризуется действующим (среднеквадратичным, эффективным) и средним (среднеарифметическим) значениями. Для синусоидальных токов действующее Iд и среднее Iср значения определяются формулами:

Примечание. В современных осциллографах часто вводят еще одну величину «Pk-Pk», т. е. «от пика до пика», которая называется также «двойной размах». Для чисто синусоидального сигнала она равна удвоенной амплитуде. Отдельный смысл она приобретает в тех случаях, когда на переменное напряжение накладывается постоянная составляющая или когда периодический сигнал имеет сложную форму.

Соответствующие формулы для синусоидального напряжения получатся заменой I на U. Для сигналов другой (несинусоидальной) формы интегральная запись среднего и среднеквадратического значений остается верной, но коэффициенты (численные соотношения) между амплитудным, средним и среднеквадратическим значениями будут другими.

Что измеряют приборы (вольтметры, амперметры) переменного тока? Вопрос о том, какую из величин – амплитудную, среднюю или среднеквадратическую – измеряет прибор, в настоящее время приобретает важное значение, поскольку современные мультиметры, как правило, цифровые приборы, в которых измеряется одно из трех значений (например, среднеквадратическое), а остальные два индицируются на шкале прибора путем пересчета измерен ного значения с помощью коэффициента формы (или коэффициента амплитуды).

Коэффициентом формы kф называется отношение действующего значения периодической функции к ее среднему за полпериода значению:

для синусоидальной функции:

Коэффициентом амплитуды kа называется отношение амплитудного значения периодической функции к ее действующему (среднеквадратическому) значению:

для синусоидальной функции

Коэффициент формы несинусоидальной функции:

где |I|ср – среднее по модулю значение функции.

Зачем нужно знание различных величин (U, Uср или Uд)?

Причина в том, что различные физические устройства «реагируют» на различные значения переменного тока. Например, мощность, выделяемая на сопротивлении ( на активной нагрузке), пропорциональна действующему значению синусоидального тока. Действительно, количество теплоты, выделяемое на R за период равно:

Это соотношение используют для определения физического смысла действующего (эффективного, среднеквадратического) значения переменного тока, даже если периодический сигнал имеет сложную форму:

действующее (эффективное) значение переменного тока – это такая величина тока, которая оказывает то же тепловое действие на активное сопротивление, какое оказывает постоянный ток, равный по величине действующему значению переменного.

На действующее значение тока «реагируют» вольтметры (амперметры) электромагнитной и электростатической системы, ваттметры, измерительные приборы теплового типа. Вольтметры (амперметры) магнитоэлектрической системы реагируют на постоянный ток, а с выпрямительным диодом – на среднее (среднеарифметическое, а не среднеквадратическое) значение переменного тока.

7.7. Понятие об аналоговых и цифровых приборах

В радиоэлектронных цепях к вольтметрам, как и другим измерительным приборам, предъ­явля­ются повышенные требования, такие как ничтожно малое потреб­ление мощности, частотный диапа­зон измеряемого напряжения от еди­ниц герц до сотен мегагерц, и в то же время слабая зависимость показаний от частоты измеряемого напряжения, высокая чувствитель­ность и т. д. Этим требованиям не соответствуют стрелочные вольт­метры, которые осуществляют непосредственную оценку (пря­мой от­счет) измеряемого напряжения. Вышеперечисленным требованиям удовлетворяют аналоговые электронные вольтметры, использующие усилители измеряемых напряжений.

С учетом назначения электронные вольтметры подразделяются на вольтметры: постоянного и переменного тока, импульсного напряже­ния, универсальные и др. Функциональная схема универ­сального ана­логового электронного вольтметра представлена на рис. 7.14, данный вольтметр явля­ется универсальным, т. е. предназначен для измерений в цепях как постоянного, так и переменного тока.

Прибор состоит из двух входных устройств: преобразователя, уси­лителя постоянного тока и магнитоэлектрического измерителя. Вход­ное устройство представляет собой высокоомный рези­стивный дели­тель напряжения служащий для изменения пределов измерения вольтметра.

Преобра­зователь (детектор) — устройство, преобразующее переменное напряжение в постоянное, — исполь­зуется при измерении цепях переменного тока.

7.7.2. Цифровые измерительные приборы.

Характерной чертой измерительных приборов со стрелочным указателем является некоторая субъективность в измерениях при определении положения стрелки на шкале прибора. Цифровые измерительные приборы (ЦИП) с цифровыми индикаторами лишены этого недостатка. Они широко применяются для измерения частоты, интервалов времени, напряжения и т.д.

ЦИП преобразуют измеряемую величину в дискретные или квантовые значения, осуществляют цифровое кодирование и выдачу результатов измерений в цифровом виде. К преимуществам ЦИП можно от­нести: достаточно широкий диапазон измеряемых величин с высокой точностью измерений, возможность представления результатов измерения в цифровом виде, запись их цифропечатающим устройством, а также ввод в ЦВМ с последующей обработкой получаемой инфор­мации и дальнейшим ее использованием.

Рассмотрим работу ЦИП на примере электронного цифрового вольтметра с время-им­пульсным преобразованием, при котором измеряемое напряжение Ux, вначале преобразуется во вре­менной интервал, а затем в цифровой вид. Функциональная схема данного вольтметра представлена на рис. 7.15. Ос­новными узлами цифрового вольтметра, которые осуществ­ляют связь измеряемого напряжения с временным

интервалом, являются: два сравнивающих устройства, генератор линейно нарастающего напряжения ГЛИН и триггер. До подачи на входное устройство измеряемого постоян­ного напряжения Ux устройство управления обеспечивает сброс прежних показаний счетчика, запус­кает ГЛИН, а также устанавливает триггер .в положение «О». Напряжение Ux подается на входное устрой­ство (делитель напряжения), затем усиливается усилителем по­стоянного тока и подается на вход 2 сравнивающего устрой­ства 11. Вход 2 сравнивающего устройства I заземлен. На входы 1 сравнивающих устройств I и II подается линейно нара­стающее напряжение uн (рис. 7.16). При равен­стве входных на­пряжений сравнивающие устройства на. своих выходах выра­батывают короткий им­пульс. Таким образом, первый импульс возникает от сравнивающего устройства (uн = 0), второй им­пульс — от сравнивающего устройства 11 при uн = Ux При этом первый импульс посредством триг­гера обеспечивает начало ра­боты ключа и на счетчик поступают импульсы с генератора счетных им­пульсов с периодом времени ТN . При подаче на триггер второго импульса ключ закрывается, а следо­вательно, прекращается счет импульсов. Таким образом, осуществлено как сравнение измеряемого напряжения Ux, с линейно нара­стающим напряжением uн, так и преобразование его во времен­ной интервал Тх .

Показания устройства цифрового отсчета определяются следующим образом:

Ux = tg β TN N ,

где TN — период импульсов генератора счетных импульсов;

N число импульсов.

При выверке нуля прибора необходимо заземлить вход уси­лителя постоянного тока, а при гра­дуировке его вход подклю­чается к калибратору, т. е. источнику калиброванного напряже­ния. Если появляется необходимость измерения переменного напряжения, последнее после делителя подается на преобразо­ватель, где преобразуется в постоянное, после чего подается на вход усилителя посто­янного тока. Цифровые вольтметры обес­печивают высокую скорость преобразования (до тысячи из­ме­рений в секунду), а также малую погрешность измерения (0,01—0,001%) в диапазоне измеряемых напряжений от 0,1 мкВ до 1000 В.

Другими ЦИП являются: цифровой амперметр, цифровой амперметр, цифровой омметр, цифровой осциллограф.

Цифровой амперметр — измеритель силы тока с цифровой ин­дикацией. В цифровых амперметрах используется косвенный метод изме­рения тока, заключающийся в измерении падения напряжения на образцовом резисторе с известным значением сопротивления посредством цифрового вольтметра. Цифровой амперметр является составной частью цифровых мультиметров, комбинированных измерительных приборов.

Основой цифрового мультиметра является цифровой вольтметр, который дополняется специальным переключающим устройством для измерения различных величин. При этом применяются электрические схемы цифровых амперметров и омметров.

Цифровой омметрприбор для измерения сопротивления с цифровой индикацией.

Известны два способа измерений. Во-первых, мост измеритель­ный Уитсона обеспечивает автоматическое уравновешивание. Для этого соединенные в соответствии с кодом сопротивления подключаются по команде устройства управления к мосту по очереди, пока не обеспечивается равновесие схемы. Второй способ заключается в пропускании через измеряемое сопротивление известного тока. Падение напряжения измеряется при помощи АЦП по способу компенсации и индицируется в цифровой форме в единицах сопротивления. Цифровой омметр является в частности, составной частью цифрового мультиметра.

Цифровой осциллограф—осциллограф с цифровой регистрацией измеряемого сигнала запоминанием и обработкой.

Аналоговый измерительный сигнал при помощи АЦП преобразуется в цифровою форму. В этом виде он может быть записан в запоминающее устройство. Цифровой осциллограф имеет микровычислитель, который может быть использован для точного расчета пара­метров измеряемых сигналов (например, значений переменного тока и и параметров импульсов) и/или программного управления измерительным процессом. Конструкция, как правило, отвечает требовани­ям агрегатирования благодаря чему этот прибор находит примене­ние в измерительных системах. Через соответствующий интерфейс он может быть соединен с внешней ЭВМ в соответствии с концепцией объединения различных однотипных сменных блоков. Осциллографы, обеспечивающие вывод на экран информации и в буквенно-цифровой форме помимо обычного изображения сиг­нала, также называют цифровыми.

За последнее время интегральная электроника получила значительное развитие, что в свою очередь расширило сферу ее применения в измерительной аппаратуре.

Чем отличаются аналоговые и цифровые датчики

Чем отличаются аналоговые и цифровые датчики

Сам термин «датчик» обозначает механизм, предназначенный для измерения какого-нибудь параметра с целью дальнейшей обработки результата измерения. Схема датчика генерирует сигнал в удобной для передачи форме, дальше сигнал преобразуется, обрабатывается или хранится. Без датчиков в некоторых современных сферах промышленности, да и во многом оборудовании разного рода, просто не обойтись.

Электроника позволяет сегодня изготавливать электронные датчики, способные контролировать процессы сразу по нескольким параметрам, что сильно расширяет возможности для построения сложных измерительных и исполнительных приборов.

Датчик обязательно содержит в своей конструкции чувствительный элемент и зачастую — преобразовательную часть. Главными же характеристиками электронных датчиков являются их чувствительность и погрешность измерения.

На сегодняшний день аналоговые и цифровые датчики используются всюду в научных и исследовательских целях, в телеметрии, в системах контроля качества и автоматизированного управления, да и во многих других областях, перечислять которые можно бесконечно. Так или иначе, это всегда те технические сферы, где необходимо получить информацию об измерении какой-нибудь величины.

Целью данной статьи будет дать читателю представление о том, чем принципиально отличаются между собой аналоговые и цифровые датчики. Мы рассмотрим на простом примере то, как одну и ту же величину можно отследить аналоговым и цифровым датчиком, и в каком случае целесообразно применение аналогового датчика, а в каком — цифрового.

Аналоговый датчик генерирует на выходе аналоговый сигнал, значение уровня которого получается функцией времени, и изменение такого сигнала происходит непрерывно, сигнал принимает постоянно какое-нибудь из множества возможных значений.

Так, аналоговые датчики подходят для отслеживания непрерывно изменяющихся физических величие, например напряжение на выводах термопары сигнализирует об изменении температуры, а напряжение на вторичной обмотке трансформатора тока оказывается в определенный период пропорционально току контролируемой цепи. Микрофон является датчиком изменения давления от звуковой волны и т.д.

Цифровые же датчики, в свою очередь, генерируют на выходе сигнал, который можно записать в форме последовательности цифровых значений, зачастую сигнал двоичный, то есть либо высокий уровень сигнала, либо низкий (нулевой). Когда сигнал цифрового датчика необходимо передать по аналоговому каналу, например по радио, прибегают к применению модуляции.

Цифровые датчики доминируют в системах связи, поскольку их выходные сигналы легко регенерировать в ретрансляторе, даже если присутствует шум. А аналоговый сигнал, в этом смысле, будет шумом искажен, и данные окажутся недостоверными. При передаче информации цифровые датчики более приемлемы.

Цифровые датчики: а — линии, б — температуры и влажности DHT11, в — движения HC-SR501, г — температуры DS18B20. Аналоговые датчики: а — громкости звука, б — света LXD5516 (фоторезистор), в — измерения расстояния SHARP-GP2Y0A02YK0F, г — регулировки сопротивления

Давайте же рассмотрим на конкретных простых примерах сначала аналоговый датчик, затем цифровой, причем измерять эти датчики в нашем примере будут один и тот же параметр — ток.

Аналоговый датчик тока

Аналоговый датчик тока

Аналоговый датчик тока на трансформаторе тока. Почему аналоговый? Потому что в данном случае ток может возрастать, например, от 0 до 5 ампер, при этом напряжение (сигнал) на выходе будет возрастать пропорционально от 0 до 1 вольта. Такой датчик позволить осуществлять контроль величины тока в измеряемой цепи непрерывно.

К примеру, будучи установленным в блок питания с ШИМ, аналоговый датчик тока сформирует аналоговый сигнал обратной связи, и чем выше будет его значение, тем значит больший ток в цепи нагрузки течет в данный момент, и схема регулировки длительности управляющего импульса, построенная на компараторе, станет уменьшать длительность управляющего импульса, приводя ток нагрузки к требуемому номинальному значению, дабы выходная мощность не возрастала неприемлемо высоко.

Цифровой датчик тока

Теперь допустим, что мы имеем дело с резонансным преобразователем электроэнергии, где нужно отслеживать колебания тока в резонансном LC-контуре, и важным параметром будет уже не только и не столько величина тока, сколько его направление.

Цифровой датчик тока

В этом случае можно использовать так же трансформатор тока, только выход трансформатора тока будет нагружен не на резистор, а на стабилитрон или на ограничительные диоды. Что это даст?

Когда ток течет в одну сторону, напряжение на вторичной обмотке трансформатора тока будет иметь определенное высокое значение, а когда в другую сторону — определенное низкое. Вот и получается «1» и «0» — цифровой сигнал, а промежуточные значения не нужны, их отслеживает другая схема, аналоговая.

Датчики направления тока могут быть реализованы и на базе эффекта Холла (цифровые датчики Холла), но в нашем примере целью было показать принципиальное различие аналогового и цифрового датчика, поэтому датчик Холла пока оставим в стороне.

  • Как подобрать аналог транзистора
  • Советы по ремонту импульсных блоков питания
  • Виды транзисторов и их применение

Надеюсь, что эта статья была для вас полезной. Смотрите также другие статьи в категории Электрическая энергия в быту и на производстве » Практическая электроника

Подписывайтесь на канал в Telegram про электронику для профессионалов и любителей: Практическая электроника на каждый день

Поделитесь этой статьей с друзьями:

Цифровой и аналоговый сигнал: в чем сходство и различие, достоинства и недостатки?

Цифровой и аналоговый сигнал: в чем сходство и различие, достоинства и недостатки?

Когда имеешь дело с теле- и радиовещанием, а также современными видами связи, очень часто приходится сталкиваться с такими терминами, как «аналоговый сигнал» и «цифровой сигнал». Для специалистов в этих словах нет никакой тайны, но для людей несведущих разница между «цифрой» и «аналогом» может быть совсем неведомой. А между тем разница есть и весьма существенная.

Когда мы говорим о сигнале, то обычно подразумеваем электромагнитные колебания, наводящие ЭДС и вызывающие колебания тока в антенне приемника. По этим колебаниям приемное устройство – телевизор, радиоприемник, рация или сотовый телефон – составляет «представление» о том, какое изображение вывести на экран (при наличии видеосигнала) и какими звуками этот видеосигнал сопроводить.

В любом случае сигнал радиостанции или вышки мобильной связи может предстать как в цифровой, так и в аналоговой форме. Ведь, к примеру, сам по себе звук – это аналоговый сигнал. На радиостанции звук, воспринимаемый микрофоном, преобразуется в уже упоминавшиеся электромагнитные колебания. Чем выше частота звука – тем выше частота колебаний на выходе, а чем громче говорит диктор – тем больше амплитуда.

Получившиеся электромагнитные колебания, или волны, распространяются в пространстве с помощью передаточной антенны. Чтобы эфир не забивался низкочастотными помехами, и чтобы у разных радиостанций была возможность работать параллельно, не мешая друг другу, колебания, получившиеся от воздействия звука, суммируют, то есть «накладывают» на другие колебания, имеющие постоянную частоту. Последнюю частоту принято называть «несущей», и именно на ее восприятие мы настраиваем свой радиоприемник, чтобы «поймать» аналоговый сигнал радиостанции.

В приемнике происходит обратный процесс: несущая частота отделяется, а электромагнитные колебания, полученные антенной, преобразуются в колебания звука, и из динамика слышится знакомый голос диктора.

В процессе передачи звукового сигнала от радиостанции к приемнику может произойти всякое. Могут возникнуть сторонние помехи, частота и амплитуда могут измениться, что, конечно же, отразится на звуках, издаваемых радиоприемником. Наконец, и сами передатчик и приемник во время преобразования сигнала вносят некоторую погрешность. Поэтому звук, воспроизводимый аналоговым радиоприемником, всегда имеет некоторые искажения. Голос может вполне воспроизводиться, несмотря на изменения, но фоном будет шипение или даже какие-то хрипы, вызванные помехами. Чем менее уверенным будет прием, тем громче и отчетливее будут эти посторонние шумовые эффекты.

Вдобавок эфирный аналоговый сигнал имеет очень слабую степень защиты от постороннего доступа. Для общественных радиостанций это, конечно, не имеет никакого значения. Но во время пользования первыми мобильными телефонами был один неприятный момент, связанный с тем, что почти любой посторонний радиоприемник мог быть легко настроен на нужную волну для подслушивания вашего телефонного разговора.

Такие недостатки есть у аналогового эфирного вещания. Из-за них, к примеру, телевидение в относительно скором времени обещает стать полностью цифровым.

Цифровой и аналоговый сигнал: в чем сходство и различие, достоинства и недостатки?

Цифровая связь и вещания считаются более защищенными от помех и от внешних воздействий. Все дело в том, что при использовании «цифры» аналоговый сигнал с микрофона на передающей станции зашифровывается в цифровой код. Нет, конечно, в окружающее пространство не распространяется поток цифр и чисел. Просто звуку определенной частоты и громкости присваивается код из радиоимпульсов. Продолжительность и частота импульсов задана заранее – она одна и у передатчика, и у приемника. Наличие импульса соответствует единице, отсутствие – нулю. Поэтому такая связь и получила название «цифровая».

Устройство, преобразующее аналоговый сигнал в цифровой код, называется аналого-цифровым преобразователем (АЦП). А устройство, установленное в приемнике, и преобразующее код в аналоговый сигнал, соответствующий голосу вашего знакомого в динамике сотового телефона стандарта GSM, называется «цифро-аналоговый преобразователь» (ЦАП).

Во время передачи цифрового сигнала ошибки и искажения практически исключены. Если импульс станет немного сильнее, продолжительнее, или наоборот, то он все равно будет распознан системой как единица. А нуль останется нулем, даже если на его месте возникнет какой-то случайный слабый сигнал. Для АЦП и ЦАП не существует других значений, как 0,2 или 0,9 – только нуль и единица. Поэтому помехи на цифровую связь и вещание почти не оказывают влияния.

Более того, «цифра» является и более защищенной от постороннего доступа. Ведь, чтобы ЦАП устройства смог расшифровать сигнал, необходимо, чтобы он «знал» код расшифровки. АЦП вместе с сигналом может передавать и цифровой адрес устройства, выбранного в качестве приемника. Таким образом, даже если радиосигнал и будет перехвачен, он не сможет быть распознан из-за отсутствия как минимум части кода. Это особенно актуально для мобильной сотовой связи.

Итак, вот отличия цифрового и аналогового сигналов:

1) Аналоговый сигнал может быть искажен помехами, а цифровой сигнал может быть или забит помехами совсем, или приходить без искажений. Цифровой сигнал или точно есть, или полностью отсутствует (или нуль, или единица).

2) Аналоговый сигнал доступен для восприятия всеми устройствами, работающими по тому же принципу, что и передатчик. Цифровой сигнал надежно защищен кодом, его трудно перехватить, если вам он не предназначается.

  • Про закон Ома в популярном изложении
  • Как правильно делать сращивание и ответвление проводов с помощью скрутки
  • Почему электрики не всегда дружат с электроникой. Часть 2. Как изучить электронику

Надеюсь, что эта статья была для вас полезной. Смотрите также другие статьи в категории Электрическая энергия в быту и на производстве » В помощь начинающим электрикам

Подписывайтесь на наш канал в Telegram: Домашняя электрика

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *