1.3.Источники в электрических цепях.
Под источникомв электротехнике понимают электротехническое
устройство, производящее электрическую энергию и питающее электрическую цепь. Источники являются причиной появления токов и напряжений в цепи. Электрическая энергия постоянного Рис 1.4
тока может быть получена путем преобразования различных видов энергии: химической (гальванические элементы и аккумуляторы), механической (генераторы постоянного тока), тепловой (термоэлектрогенераторы), лучистой, например, световой (солнечные батареи). Все источники электрической энергии характеризуются определенным значением либо электродвижущей силы Е (э.д.с.)-источники напряжения, либо тока I-источники тока. В источниках (активных элементах цепи) за счет энергии сторонних сил совершается перенос положительных зарядов от меньшего потенциала к большему. Работа сторонних сил, затрачиваемая на перенос единичного заряда от зажима с меньшим потенциалом к зажиму с большим потенциалом, называется электродвижущей силой — Э.Д.С. источника и обозначается, в цепях постоянного тока, буквой Е. Э.Д.С. источника численно равна напряжению между зажимами источника при отсутствии в нем тока.
1.3.1. Источник напряжения.
Идеальный источник напряжения — это активный элемент, напряжение на зажимах которого не зависит от тока, протекающего через источник. Внутреннее сопротивление r0 идеального источника напряжения равно нулю.
Условные графические изображения источников постоянного напряжения приведены на рис. 1.4.(а, б, в), где стрелками обозначены положительные направления э.д.с. и напряжений на зажимах источника. Поскольку для идеального источника напряжение остается неизменным (U=E),то в схемах вместо источника э.д.с. часто показывают зажимы, к которым приложено напряжение U (рис. 1.4. б).
На рисунке 1.5 представлена вольтамперная характеристика U=f(I) идеального источника напряжения (кривая «a»), где на осях обозначены: U-напряжение на зажимах источника, I-ток, протекающий через источник. Такой источник, судя по его вольтамперной характеристике, способен отдавать во внешнюю цепь бесконечно большую мощность. Очевидно,
Рис 1.5 что, в действительности, такого источника не существует. Реальный источник напряжения обладает внутренним сопротивлением r0. Его схема замещения имеет вид рис.1.4 (а), а вольтамперная характеристика-кривая «в» на рис. 1.5, которая математически может быть описана уравнением:
(1.5)
1.3.2. Источник тока.
Наряду с понятием источника э.д.с. при расчетах электрических цепей пользуются понятием — источник тока.
Идеальным источником тока называется активный элемент, который поддерживает во внешней цепи ток, не зависящий от напряжения на его зажимах. Внутреннее сопротивление идеального источника тока r0=∞. Для изображения
Рис 1.6 источника тока используется обозначение, представленное на рис. 1.6 (а). Направление двойной стрелки соответствует положительному направлению тока источника.
Вольтамперная характеристика источника токаимеет вид рис. 1.7, где зависимость«a»-вольтамперная характеристика идеального источника тока, а зависимость «в»-вольтамперная характеристика реального источника тока, имеющего конечное внутреннее сопротивление. На схеме реальный источник изображается в виде идеального источника тока и подключенного параллельного ему сопротивления (рис. 1.6 (б)). Необходимо отметить, что обе схемы замещения
Рис 1.7 реальных источников электрической энергии (рис.1.4(а) и рис.1.5(б)) являются эквивалентными (они имеют одну и ту же вольтамперную характеристику ) с точки зрения токов, напряжений и мощностей во внешних участках электрической цепи. Если внутреннее сопротивление источника r0 много больше сопротивления пассивного сопротивления приемника (нагрузки) rН, т.е. r0>rН, то ток источника при изменении rН остается практически неизменным. В этом случае источник электрической энергии выступает в роли источника тока; в случае, когда r0rН, напряжение на зажимах источника остается практически неизменным при изменении rН. В этом случае в качестве источника электрической энергии рассматривается источник напряжения.
Вопрос №24
Соединение звездой При соединении обмоток звездой все три фазы имеют одну общую точку – ноль. При этом такая система может быть трехпроводной или четырехпроводной. В последнем случае используется нулевой провод. Нулевой провод не нужен, если система симметрична, то есть токи в фазах такой системы одинаковы. Но если нагрузка несимметрична, то фазные токи различны, и в нулевом проводе возникает ток, который равен векторной сумме фазных токов Также, нулевой провод может выступать в роле одной из фаз, если она выйдет из строя, это предотвратит выход из строя всей системы. Правда нужно учитывать, что нулевой провод не рассчитан на подобные нагрузки, и в целях экономии металла и изоляции он изготавливает под более малые токи, чем в фазах. В трехфазных цепях существуют так называемые фазные и линейные напряжения и токи. Фазное напряжение – это разность потенциалов между нулевой точкой и линейным проводом. То есть, проще говоря, фазное напряжение — это напряжение на фазе. Линейное напряжение – это разность потенциалов между линейными проводами. При соединении звездой фазные и линейные напряжения соотносятся как А фазные и линейные токи при симметричной нагрузке одинаковы Таким образом, можно сделать вывод, что в симметричной трехфазной цепи при соединении фаз звездой напряжения отличаются друг от друга в 1,72 раз, а линейные и фазные токи равны.
Вопрос 28
Схема однофазного двухобмоточного трансформатора представлена ниже. На схеме изображены основные части: ферромагнитный сердечник, две обмотки на сердечнике. Первая обмотка и все величины которые к ней относятся (i1-ток, u1-напряжение, n1-число витков,Ф1 – магнитный поток) называют первичными, вторую обмотку и соответствующие величины — вторичными. Первичную обмотку включают в сеть с переменным напряжением, её намагничивающая сила i1n1 создает в магнитопроводе переменный магнитный поток Ф, который сцеплен с обеими обмотками и в них индуцирует ЭДС e1= -n1dФ/dt, e2= -n2dФ/dt. При синусоидальном изменении магнитного потока Ф = Фm sinωt , ЭДС равно e = Em sin (ωt-π/2). Для того чтобы посчитать действующее значение ЭДС нужно воспользоваться формулой E=4.44 f n Фm, где f- циклическая частота, n – количество витков, Фm – амплитуда магнитного потока. Причем если вы хотите посчитать величину ЭДС в какой либо из обмоток, нужно вместо n подставить число витков в данной обмотке. Конструкция обмоток, их изоляция и способы крепления на стержнях зависят от мощности трансформатора. Для их изготовления применяют медные провода круглого и прямоугольного сечения, изолированные хлопчатобумажной пряжей или кабельной бумагой. Обмотки должны быть прочными, эластичными, иметь малые потери энергии и быть простыми и недорогими в изготовлении. В обмотке и сердечнике трансформатора наблюдаются потери энергии, в результате которых выделяется тепло. В связи с этим трансформатору требуется охлаждение. Некоторые маломощные трансформаторы отдают свое тепло в окружающую среду, при этом температура установившегося режима не влияет на работу трансформатора. Такие трансформаторы называют “сухими”, т.е. с естественным воздушным охлаждением. Но при средних и больших мощностях, воздушное охлаждение не справляется, вместо него применяют жидкостное, а точнее масляное. В таких трансформаторах обмотка и магнитопровод помещены в бак с трансформаторным маслом, которое усиливает электрическую изоляцию обмоток от магнитопровода и одновременно служит для их охлаждения. Масло принимает теплоту от обмоток и магнитопровода и отдает ее стенкам бака, с которых тепло рассеивается в окружающую среду. При этом слои масла имеющие разницу в температуре циркулируют, что улучшает теплообмен. Трансформаторам с мощностью до 20-30 кВА хватает охлаждения бака с гладкими стенками, но при больших мощностях устанавливаются баки с гофрированными стенками. Также нужно учитывать что при нагреве масло имеет свойство увеличиваться в объеме, поэтому в высокомощных трансформаторах устанавливают резервные баки и выхлопные трубы (в случае если масло закипит, появятся пары которым нужен выход). В трансформаторах меньшей мощности ограничиваются тем, что масло не заливают до самой крышки.
1.2. Источники электрической энергии: источники эдс и источники тока
Источники электрической энергии в электрических цепях принято рассматривать как источники ЭДС или как источники тока. Источник электрической энергии характеризуется ЭДС Е и внутренним сопротивлением Rвн. К источникам ЭДС обычно относят источники электромагнитной энергии, в которых ЭДС Е не зависит или практически не зависит от тока I, идущего от источника в приемник, и их внутреннее сопротивление Rвн. Следовательно, напряжение на зажимах источника U=Е-IRвн сравнительно мало изменяется в пределах изменения тока от 0 до номинального Iн. На рис.1.3 приведена зависимость U=f(I) такого источника при E=const и R=const. Она представляет собой прямую линию. Линейная цепь должна содержать только источники ЭДС с такой линейной характеристикой. Если Rвн=0 и E=const, то U=E=const, и такой источник принято называть идеальным источником ЭДС. Следовательно, источник ЭДС представляет собой такой идеализированный источник питания, напряжение на зажимах которого постоянно (не зависит от тока) и равно ЭДС Е, а внутреннее сопротивление равно нулю (Rвн=0).
При расчете и анализе электрических цепей реальный источник электрической энергии с конечным значением Rвн заменяется расчетным эквивалентом. В качестве эквивалента может быть взят источник ЭДС Е с последовательно включенным сопротивлением Rвн, равным внутреннему сопротивлению реального источника (рис.1.4); стрелка в кружке указывает направление возрастания потенциала внутри источника ЭДС. Если теперь отнести Rвн к приемнику, добавив его к сопротивлению приемника, то цепь будет рассматриваться как содержащая идеальный источник ЭДС. Источниками ЭДС являются, например, аккумуляторы, гальванические элементы, вращающиеся электрические генераторы постоянного тока.
Рис. 1.3 Рис. 1.4
К источникам тока обычно относят источники электромагнитной энергии, в которых ток не зависит от напряжения U, которое создается источником на зажимах приемника. Следовательно, источник тока представляет собой идеализированный источник питания, который создает ток I, не зависящий от сопротивления нагрузки, к которой он присоединен, а его ЭДС Е и внутреннее сопротивление Rвн равны бесконечности. Вольт-амперная характеристика такого источника имеет вид, показанный на рис.1.5. Источниками тока являются, например, источники энергии, основанные на излучении заряженных частиц, выделяющихся при радиоактивном распаде вещества, так как при этом ток источника определяется скоростью распада.
При расчете и анализе электрических цепей реальный источник электрической энергии с конечным значением Rвн заменяют расчетным эквивалентом, в качестве которого может быть взят источник тока Jк=Eит/Rит с параллельно включенным Rвн (рис.1.6). Стрелка в кружке показывает положительное направление тока источника тока. Отношение двух бесконечно больших величин Eит/Rвн равно конечной величине – току Jк источника тока.
Ток в нагрузке (в сопротивлении R для схем рис.1.4 и 1.6) одинаков и равен I=E/(Rвн+R). Каким из двух расчетных эквивалентов пользоваться, совершенно безразлично. Обратим внимание на следующее:
- источник ЭДС и источник тока – идеализированные источники, физически осуществить которые, строго говоря, невозможно;
- схема, представленная на рис. 1.4, эквивалентна схеме, приведенной на рис. 1.6, в отношении энергии, выделяющейся в сопротивлении нагрузки, и не эквивалентна ей в отношении энергии, выделяющейся во внутреннем сопротивлении источника питания Rвн;
- идеальный источник ЭДС без последовательно соединенного с ним сопротивления Rвн нельзя заменить идеальным источником тока.
Источники электрического тока
Источники электрического тока — это устройства, которые производят или поддерживают электрический ток в электрической цепи. Источники тока работают за счет преобразования различных видов энергии в электрическую энергию, а также за счет разделения положительно и отрицательно заряженных частиц.
Существуют разные виды источников тока, которые можно классифицировать по разным критериям. Вот некоторые из них:
По виду энергии, которая преобразуется в электрическую энергию, различают следующие виды источников тока:
- Механические — генераторы, которые преобразуют механическую энергию вращения вала в электрическую энергию.
- Тепловые — термопары и термогенераторы, которые преобразуют тепловую энергию в электрическую энергию за счет разности температур.
- Световые (фотоэлектрические) — солнечные батареи и фотоэлементы, которые преобразуют энергию фотонов света в электрическую энергию за счет фотоэффекта.
- Химические — гальванические элементы и аккумуляторы, которые преобразуют химическую энергию реакций в электрическую энергию за счет электрохимических процессов.
По способу получения электрического тока, различают следующие виды источников тока:
- Первичные — источники тока, которые не могут быть восстановлены после истощения их энергетических ресурсов, например, гальванические элементы.
- Вторичные — источники тока, которые могут быть восстановлены путем подачи электрического тока от другого источника, например, аккумуляторы.
- Переменные — источники тока, которые дают во внешнюю цепь ток, меняющий свое направление и величину, например, генераторы переменного тока.
- Постоянные — источники тока, которые дают во внешнюю цепь ток, не меняющий свое направление и величину, например, генераторы постоянного тока.
Электрический ток — как его создавать и поддерживать
Электрическим током называется упорядоченное движение заряженных частиц. Чтобы получить электрический ток в проводнике надо создать в нем электрическое поле. Если заряженное тело соединить проводником с землей, то в проводнике возникает кратковременный электрический ток. Для того чтобы получить и поддерживать в проводнике электрическое поле, применяют источники электрического тока .
Во всяком источнике тока совершается работа по разделению положительно и отрицательно заряженных частиц. Разделенные частицы накапливаются на полюсах источника. Между полюсами образуется электрическое поле. Если соединить их проводником, то поле возникает в проводнике.
В электрической машине разделение зарядов производится с помощью механической энергии. При этом она превращается в электрическую. В термоэлементе внутренняя энергия превращается в электрическую. Атомные батареи преобразуют атомную энергию в электрическую.
Фотоэлемент превращает световую энергию в электрическую. Из фотоэлементов составляют солнечные батареи. Их используют там, где световая энергия является самой доступной.
Энергию рек, угля, нефти, атома превращают в электрическую энергию на электростанциях. Наиболее распространенные источники электрического тока — гальванические элементы и аккумуляторы.
Чем отличаются источник тока от источников напряжения
Источник тока и источник напряжения — это два разных типа источников электрической энергии, которые имеют разные свойства и характеристики.
Основное различие между ними заключается в том, что источник тока поддерживает постоянный ток в электрической цепи, независимо от напряжения на его зажимах, а источник напряжения поддерживает постоянное напряжение на своих зажимах, независимо от тока в цепи.
Источник тока можно представить как идеальный генератор тока, который имеет бесконечно большое сопротивление, а источник напряжения — как идеальный генератор напряжения, который имеет нулевое сопротивление.
В реальности такие идеальные источники не существуют, и все источники имеют некоторое внутреннее сопротивление, которое влияет на их работу.
В зависимости от соотношения внутреннего сопротивления и сопротивления нагрузки, источники могут быть ближе к источнику тока или к источнику напряжения.
Источник тока и источник напряжения могут быть созданы из разных видов энергии, таких как механическая, тепловая, световая, химическая и другие.
Например, генератор, который преобразует механическую энергию вращения вала в электрическую энергию, может быть источником тока или источником напряжения в зависимости от его конструкции и режима работы.
Термопара, которая преобразует тепловую энергию разности температур в электрическую энергию, является источником напряжения.
Солнечная батарея, которая преобразует энергию фотонов света в электрическую энергию, является источником тока. Гальванический элемент, который преобразует химическую энергию реакций в электрическую энергию, может быть источником тока или источником напряжения в зависимости от его типа и состояния.
Гальваническим элементом называются источники электрического тока, в которых химическая энергия превращается в электрическую.
Так устроен простейший гальванически элемент.
Первый гальванический элемент был изобретен Вольтом в 1799 году. Из отдельных элементов он сконструировал батарею, которую назвали «вольтов столб». В гальваническом элементе электроды обязательно должны по-разному взаимодействовать с раствором, поэтому электроды делают из различных материалов.
Цинковая пластинка в элементе Вольта заряжается отрицательно, а медная — положительно.
А так устроен сухой гальванический элемент. Вместо жидкости в нем используют густой клейстер:
Из нескольких элементов можно составить батарею:
От гальванических элементов работают лампочки в электрических фонарях, а также другие различные переносные электроприборы и детские игрушки. Когда электроды в гальваническом элементе израсходуются, элемент заменяю новым.
Аккумуляторами называют химические источники электрического тока, в которых электроды не расходуются. Простейший аккумулятор состоит из двух свинцовых пластин, погруженных в раствор серной кислоты.
Такой аккумулятор еще не дает тока. Перед использованием его надо зарядить. Для этого соединяют полюсы аккумулятора с такими же полюсами какого-либо источника тока.
Ток, который идет через аккумулятор во время зарядки, изменяет химический состав его пластин. Химическая энергия аккумулятора увеличивается.
Разряжаясь аккумулятор превращает химическую энергию в электрическую. Разрядившийся аккумулятор можно заряжать снова.
Из отдельных аккумуляторов собирают батареи.
Кроме аккумуляторов кислотных (свинцовых), применяют аккумуляторы щелочные (железо-никелевые).
В настоящее время широко применяются также никель-кадмиевые и никель-металл-гидридные аккумуляторы. В авиации и космосе используют серебряно-цинковые аккумуляторы. Новые типы аккумуляторов: литий-ионные, литий-полимерные используются в мобильных телефонах, планшетах и другой современной переносной технике.
Аккумуляторы применяют в тех случаях, когда источник электрического тока выгоднее перезаряжать, чем заменять новым. В автомобиле аккумулятор служит для запуска двигателя и работы различных приборов. В космосе аккумулятор заряжается от солнечных батарей. Разряжаясь, он питает радиопередатчики и аппаратуру.
Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Не пропустите обновления, подпишитесь на наши соцсети: