Датчик света. Фототранзистор, фотодиод
Фототранзисторы относятся к классу оптоэлектронных компонентов, также как фотодиоды, фоторезисторы и светодиоды.
При попадании света на фототранзистор его ток увеличивается, что позволяет использовать фоторанзисторы в качестве датчиков света, которые одновременно с преобразованием светового сигнала в электрический усиливают последний.
Основой фототранзистора служит полупроводниковый монокристалл, который заключают в прозрачный защитный корпус, либо в корпус с прозрачным окном. Прозрачность корпуса обеспечивает доступность базы фототранзистора для светового облучения, за счёт чего появляется возможность управлять прохождением электрического тока с помощью света.
При отстутствии падающего на базу света через фототранзистор протекает незначительный ток, который обычно не превышает десятков наноампер (нА). Такой ток называют темновым током. Кроме величины темнового тока фототранзисторы характеризуются интегральной чувствительностью — отношением фототока к величине падающего света.
Фототранзистор и его выводы.
У двухвыводных фототранзисторов вывод эммитера более длинный
Фототранзисторы могут иметь три или два вывода, в последнем случае используется только коллектор и эмиттер. Подключение двухвыводного фототранзистора похоже на включение обычного фотодиода, которые также достаточно часто используют в качестве основы для фотодатчиков у роботов.
Фотодиод представляет собой диод, в котором обеспечена возможность воздействия света на полупроводниковый переход. Воздействие света вызывает напряжение на выводах фотодиода или протекание тока в цепи, в которую включен фотодиод.
Обозначения фотодиодов на схемах
Условное обозначение фотодиода на схемах очень похоже на обозначение обычного диода с двумя направленными на него стрелками. Не стоит путать обозначение фотодиода с обозначением светодиода, у которого стрелки направлены от него.
В отличие от фототранзисторов, фотодиоды только преобразуют свет в электрический ток, но не усиливают его. Кроме того, фототранзисторы обладают большей, чем фотодиоды, чувствительностью — порядка сотни миллиампер на люмен.
Обозначение фоторезистора на схемах
Фоторезисторы также применяются при построении датчиков света. Сопротивление фоторезистора уменьшается при воздествии на него света. Основным недостатком фоторезисторов является их достаточно большая инерционность, влияющая на скорость работы датчиков, в основе которых используется фоторезистор.
Важной характеристикой фототранзисторов и фотодиодов является диапазон спектра, в котором они имеют наибольшую чувствительность. Помимо фототранзисторов, работающих в видимом диапазоне световых волн, достаточно распространенными являются фототранзисторы инфракрасного диапазона (ИК-фототранзисторы).
Чувствительность фототранзистора
Фотоприемники на основе материалов А2Вв хорошо согласуются по спектральным характеристикам с электролюминофорами. Область спектральной чувствительности фотоприемников типа CdS и его аналогов (CdTe, CdSe) и твердых растворов на их основе перекрывает всю видимую часть спектра от 400 до 900 нм. Интегральная чувствительность фоторезисторов на этих материалах достаточно высока и составляет 0,1. 10, А/(лм • В). В результате сопротивление при освещенностях 102. . 103 лк изменяется в пределах 10′. 108 Ом.
Когда фоторезистор подвергается немонохроматическому излучению заданного спектрального состава, величина S/ определяет интегральную чувствительность. Для измерения интегральной чувствительности фотоэлектрических приборов принято использовать лампу накаливания с вольфрамовой нитью при температуре 2850 К. Чувствительность фоторезисторов достигает 20 А/лм.
В зависимости от материала полупроводникового слоя чувствительность фоторезисторов к различным участкам спектра излучения будет различной. Например, фоторезисторы, изготовленные на ба;$е соединений свинца, наиболее пригодны как фотоприемники для использования в инфракрасной области, а фоторезисторы, изготовленные на базе соединений кадмия, — в видимой области спектра. Вольт-амперные характеристики фоторезисторов обычно линейны. Характеристики 2 — 4 получены при освещении (чем больше
Граничной частотой фотоприемника frp называется частота синусоидально-модулированного потока излучения, при которой чувствительность фотоприемника падает до значения 0,707 (на —3 дБ) от чувствительности при немодулированном излучении. Граничная частота фоторезисторов не превышает нескольких килогерц. Выпускаемые отечественной промышленностью фоторезисторы имеют чувствительность 5 = 0,5 — 20 мСм/лм, рабочее напряжение — от нескольких десятков до нескольких сотен вольт. Таким образом, чувствительность фоторезисторов существенно превышает чувствительность вакуумных фотоэлементов. Чувствительность фоторезисторов сильно зависит от температуры окружающей среды, гораздо сильнее, чем у вакуумных фотоэлементов. Несмотря на указанные недостатки, фоторезисторы находят практическое применение, особенно в автоматике и вычислительной технике. Ниже будут рассмотрены полупроводниковые фотоэлектрические приборы, у которых рабочая среда, в отличие от фоторезистора, представляет собой неоднородную полупроводниковую структуру либо структуру полупроводник — металл.
Значения фототека сильно зависят от спектрального состава светового потока. Эта зависимость видна из спектральной характеристики, вид которой для фоторезистора, выполненного из сульфида кадмия, приведен на 17.8 (где /фтах — фототок, соответствующий максимуму спектральной чувствительности). Интегральная чувствительность фоторезисторов на два порядка выше, чем электронных фотоэлементов.
Отечественная промышленность выпускает приемники проникающей радиации различных марок: РГД-0, РГД-1, РГД-2 и ГД-Г1 (рентгено-гамма-датчик и гамма-датчик). Отличаются эти приемники проникающей радиации друг от друга в основном внешним конструктивным оформлением. Чувствительностью к рентгене- и гамма-излучению помимо перечисленных приемников проникающей радиации обладают сернисто-кадмиевые фоторе-зисторы ФСК.-М и ФСК, а также селенисто-кадмиевые ФСД. Однако удельная чувствительность фоторезисторов к проникающей радиации примерно на два порядка меньше, чем приемников проникающей радиации. Свойства приемников проникающей радиации характеризуются зависимостями и параметрами, аналогичными зависимостям и параметрам фоторезисторов. Основ-
Чувствительность фоторезисторов выше, чем чувствительность -.вакуумных фотоэлементов.
Фоторезисторы изготовляются из разных полупроводниковых материалов: сернистогс свинца, сернистого висмута, сернистого кадмия и др. Чувствительность фоторезисторов выше, чем у вакуумных фотоэлементов с внешним фотоэффектом и достигает 10 ма/лм.
В зависимости от материала полупроводникового слоя чувствительность фоторезисторов к различным участкам спектра излучения будет различной. Например, фоторезисторы, изготовленные на базе соединений свинца, наиболее пригодны как фотоприемники для использования в инфракрасной области, а фоторезисторы, изготовленные на базе соединений кадмия, — в видимой области спектра. Вольт-амперные характеристики фоторезисторов обычно линейны. Характеристики 2. 4 получены при освещении (чем больше освещенность, тем круче характеристика), а характеристика / соответствует темновому току при различном напряжении.
Граничной частотой фотоприемника Утр называют частоту синусоидально-модулированного потока излучения, при которой чувствительность фотоприемника падает до значения 0,707 (на —ЗдБ) от чувствительности при немодулированном излучении. Граничная частота фоторезисторов не превышает нескольких килогерц. Отечественные фоторезисторы имеют чувствительность S = 0,5. 2ОмСм/лм, рабочее напряжение — от нескольких десятков до нескольких сотен вольт. Таким образом, чувствительность фоторезисторов существенно превышает чувствительность вакуумных фотоэлементов. Чувствительность фоторезисторов в большей степени зависит от температуры окружающей среды, чем чувствительность вакуумных фотоэлементов. Несмотря на указанные недостатки, фоторезисторы находят практическое применение, особенно в автоматике и вычислительной технике. Далее будут рассмотрены полупроводниковые фотоэлектрические приборы, у которых рабочая среда в отличие от фоторезистора представляет собой неоднородную полупроводниковую структуру либо структуру полупроводник — металл.
4.2. Относительная спектральная чувствительность фоторезисторов:
Достоинство фоторезисторов на основе спеченных слоев сульфида кадмия — высокая технологичность и возможность контролируемого изменения их свойств. Однако поликристалличность слоев является препятствием для получения низких уровней шума. Пороговая чувствительность фоторезисторов на поликристаллическом. CdS ограничивается наличием избыточного шума, возникающего из-за специфического модуляционного процесса на границах раздела зерен (см. гл. 2). Обычно она составляет 3-10~12 . 3- КН1 Вт-Гц-1/2.
Интегральная чувствительность фототранзистора /Ст в 1 + /121э раз больше, чем у фотодиода. Это объясняется тем, что у фототранзистора наряду с образованием фототока /ф происходит его усиление в 1 + /г21э раз.
Кт— интегральная чувствительность фототранзистора
На 17.12 представлена двухполюсная схема включения фототранзистора. Под действием света в области базы образуются пары носителей зарядов — электроны и дырки. Дырки (неосновные носители базы) под действием электрического поля источника ЕК движутся через коллекторный переход, образуя фо-тоток /ф, проходящий через нагрузку /?н. Электроны, не прошедшие через эмиттерный переход и оставшиеся в базе, снижают потенциальный барьер. Это облегчает переход дырок из эмиттера в базу, увеличивая коллекторный фототек. Чувствительность фототранзистора сильно превышает чувствительность фотодиодов и имеет значения порядка 0,5—1 А/лм.
Чувствительность фототранзистора, таким образом, значительно выше чувствительности фотодиода. Вольт-амперные характеристики фототранзистора с оборванной базой аналогичны выходным характеристикам биполярного транзистора, включенного по схеме с ОЭ ( 17.28). Основным параметром прибора является световой поток Ф. Частотные характеристики фототранзисторов хуже, чем для фотодиодов, из-за инерционности эмиттерного перехода за счет его емкости. Параметры фототранзисторов существенно зависят от температуры.
Токовая чувствительность фототранзистора — это отношение изменения электрического тока на выходе фототранзистора к изменению потока излучения при холостом ходе на входе и коротком замыкании на выходе по переменному току.
тока в р раз больше, а интегральная чувствительность фототранзистора по сравнению с фотодиодом увеличивается:
Эмиттерный переход биполярного фототранзистора включен в прямом направлении. Его удельная емкость около 105 пФ’СМ~2. Постоянная времени заряда емкости эмиттерного перехода увеличивается с ослаблением интенсивности светового потока. При малых световых потоках она определяет в основном инерционность фототранзистора. При больших световых потоках на инерционность фототранзистора влияют время диффузии носителей в базе и емкость коллекторного перехода. Поэтому для фототранзистора выбирают материалы с высокой подвижностью носителей, используют структуру с внутренним электрическим полем в базе или с тонкой базой. Уменьшать емкость коллекторного перехода снижением концентрации примесей в области коллектора удается лишь до некоторого предела. Сокращать для этой цели площадь эквивалентного фотодиода нецелесообразно, так как при этом падает чувствительность фототранзистора. При тонкой базе ухудшается чувствительность фототранзистора на более длинных волнах излучения. Реальная постоянная времени фототранзистора на 2—3 порядка больше, чем фотодиода. Произведение М/гр фототранзистора соизмеримо с /гр эквивалентного фотодиода, образованного коллекторным р-п-пе-реходом.
Токовая чувствительность фототранзистора увеличена в М раз по сравнению с чувствительностью эквивалентного фотодиода и достигает значений 20—25 А-лм-1. Входное сопротивление фототранзистора около 10е—108 Ом. Поэтому выбором сопротивления /?п можно всегда обеспечить высокую чувствительность. Инерционные свойства фототранзистора определяет в основном постоянная времени в цепи затвора тз «/?„Спер, где С„ер — емкость перехода затвор — канал. Уменьшать емкость Спер можно только до некоторого предела изменением концентрации примесей областей канала и затвора. Сокращение площади перехода снижает не только Спер, но и чувствительность эквивалентного фотодиода затвор — канал. Снижение сопротивления /?н уменьшает чувствительность и коэффициент усиления. Для малых световых потоков постоянная времени Т3 *>Ю-7 с.
Токовая чувствительность фототранзистора — это отношение изменения электрического тока на выходе фототранзистора к изменению потока излучения при холостом ходе на входе и коротком замыкании на выходе по переменному току.
Чувствительность фототранзистора, таким образом, значительно выше чувствительности фотодиода. Вольт-амперные характеристики фототранэистора с оборванной базой аналогичны выходным характеристикам биполярного транзистора, включенного по схеме с ОЭ ( 1.52). Основным параметром прибора является световой поток Ф. Частотные характеристики фототранзисторов хуже, чем для фотодио-
где g — крутизна характеристики. Таким образом, ток /ф усиливается в gR3 раз. Во столько же раз чувствительность полевого фототранзистора выше чувствительности фотодиода. Увеличивая R3, можно повысить чувствительность фототранзистора, однако при этом растет и постоянная времени т^с = R3C3_и, т. е. ухудшается быстродействие прибора.
Фотодатчики и их применение
В различных электронных устройствах, устройствах домашней и промышленной автоматики, различных радиолюбительских конструкциях фотодатчики используются очень широко. Кто хоть раз разбирал старую компьютерную мышь, как ее называли «комовскую», еще с шариком внутри, наверняка видел колесики с прорезями, крутящиеся в щели фотодатчиков.
Подобные фотодатчики называются фотопрерывателями – прерывают поток света. С одной стороны такого датчика находится источник – светодиод, как правило, инфракрасный (ИК), с другой фототранзистор (если быть точнее, то два фототранзистора, в некоторых моделях фотодиода, чтобы определить еще и направление вращения). При вращении колесика с прорезями на выходе фотодатчика получаются электрические импульсы, что является информацией об угловом положении этого самого колесика. Такие устройства называются энкодерами. Причем энкодер может быть просто контактным, вспомните колесико у современной мышки!
Фотопрерыватели используются не только в «мышках» а и в других устройствах, например, датчиках частоты вращения какого-либо механизма. В этом случае применяется одинарный фотодатчик, ведь направление вращения определять не требуется.
Если из каких-то соображений, чаще всего для ремонта, залезть в другие устройства электронной техники, то фотодатчики можно обнаружить в принтерах, сканерах и копирах, в приводах CD дисководов, в DVD плеерах, кассетных видеомагнитофонах, видеокамерах и в другой аппаратуре.
Так какие же бывают фотодатчики, и что они из себя представляют? Просто посмотрим, не вникая в физику полупроводников, не разбираясь в формулах и не произнося непонятных слов (рекомбинация, рассасывание неосновных носителей), что называется «на пальцах», как эти фотодатчики работают.
Рисунок 1. Фотопрерыватель
Фоторезистор
С ним все понятно. Как обычный постоянный резистор имеет омическое сопротивление, направление подключения в схеме роли не играет. Только в отличие от постоянного резистора меняет сопротивление под воздействием света: при освещенности оно уменьшается в несколько раз. Количество этих «раз» зависит от модели фоторезистора, в первую очередь от его темнового сопротивления.
Конструктивно фоторезисторы представляют собой металлический корпус со стеклянным окошком, сквозь которое видна сероватого цвета пластинка с зигзагообразной дорожкой. Более поздние модели выполнялись в пластмассовом корпусе с прозрачным верхом.
Быстродействие фоторезисторов невелико, поэтому работать они могут лишь на очень низких частотах. Поэтому в новых разработках они почти не применяются. Но случается, что в процессе ремонта старой техники с ними встретиться придется.
Чтобы проверить исправность фоторезистора достаточно проверить его сопротивление с помощью мультиметра. При отсутствии освещения сопротивление должно быть большим, к примеру, у фоторезистора СФ3-1 темновое сопротивление по справочным данным 30МОм. Если его осветить, то сопротивление упадет до нескольких КОм. Внешний вид фоторезистора показан на рисунке 2.
Рисунок 2. Фоторезистор СФ3-1
Фотодиоды
Очень похожи на обычный выпрямительный диод, если бы не свойство реагировать на свет. Если его «прозванивать» тестером, лучше несовременным стрелочным, то при отсутствии освещения результаты будут те же, как в случае измерения обычного диода: в прямом направлении прибор покажет маленькое сопротивление, а в обратном стрелка прибора почти не сдвинется с места.
Говорят, что диод включен в обратном направлении (этот момент следует запомнить), поэтому ток через него не идет. Но, если в таком включении фотодиод засветить лампочкой, то стрелка резко устремится к нулевой отметке. Такой режим работы фотодиода называется фотодиодным.
Еще у фотодиода есть фотогальванический режим работы: при попадании на него света он, как солнечная батарея, вырабатывает слабенькое напряжение, которое, если усилить, можно использовать в качестве полезного сигнала. Но, чаще фотодиод используется в фотодиодном режиме.
Фотодиоды старой конструкции по внешнему виду представляют металлический цилиндрик с двумя выводами. С другой стороны находится стеклянная линза. Современные фотодиоды имеют корпус просто из прозрачной пластмассы, в точности такой же как и светодиоды.
Рис. 2. Фотодиоды
Фототранзисторы
По внешнему виду бывают просто неотличимы от светодиодов, тот же корпус из прозрачной пластмассы или цилиндрик со стекляшкой в торце, а из него два вывода — коллектор и эмиттер. Базовый вывод фототранзистору вроде как не нужен, ведь входным сигналом для него является световой поток.
Хотя, некоторые фототранзисторы вывод базы все же имеют, что позволяет кроме света управлять транзистором еще и электрическим способом. Такое можно встретить у некоторых транзисторных оптронов, например АОТ128 и импортных 4N35, — по сути функциональных аналогов. Между базой и эмиттером фототранзистора включают резистор, чтоб несколько прикрыть фототранзистор, как показано на рисунке 4.
Рисунок 3. Фототранзистор
У нашего оптрона обычно «вешают» 10 — 100КОм, а вот у импортного «аналога» около 1МОм. Если поставить даже 100КОм, то он работать не будет, транзистор просто наглухо закрыт.
Как проверить фототранзистор
Фототранзистор достаточно просто проверить тестером, даже если у него нет вывода базы. При подключении омметра в любой полярности сопротивление участка коллектор – эмиттер достаточно большое, поскольку транзистор закрыт. Когда на линзу попадет свет достаточной интенсивности и спектра, то омметр покажет маленькое сопротивление – транзистор открылся, если, конечно, удалось угадать полярность подключения тестера. По сути дела такое поведение напоминает обычный транзистор, только тот открывается электрическим сигналом, а этот световым потоком. Кроме интенсивности светового потока немалую роль играет его спектральный состав. Про особенности проверки транзисторов смотрите здесь.
Спектр света
Обычно фотодатчики настроены на определенную длину волны светового излучения. Если это излучение инфракрасного диапазона, то такой датчик плохо реагирует на синий и зеленый светодиоды, достаточно хорошо на красный, лампу накаливания и само собой на инфракрасный. Также нехорошо воспринимает свет от люминесцентных ламп. Поэтому причиной плохой работы фотодатчика может быть просто неподходящий спектр источника света.
Выше было написано, как прозвонить фотодиод и фототранзистор. Тут следует обратить внимание на такую вроде бы мелочь, как тип измерительного прибора. У современного цифрового мультиметра в режиме прозвонки полупроводников плюс находится там же, где и при измерении постоянного напряжения, т.е. на красном проводе.
Результатом измерения будет падение напряжения в милливольтах на p-n переходе в прямом направлении. Как правило, это цифры в пределах 500 — 600, что зависит не только от типа полупроводникового прибора, но еще и от температуры. При увеличении температуры эта цифра уменьшается на 2 на каждый градус Цельсия, что обусловлено температурным коэффициентом сопротивления ТКС.
При пользовании стрелочным тестером надо помнить, что в режиме измерения сопротивлений плюсовой вывод находится на «минусе» в режиме измерения напряжений. При таких проверках освещать фотодатчики лучше лампой накаливания с близкого расстояния.
Сопряжение фотодатчика с микроконтроллером
В последнее время многие радиолюбители увлеклись конструированием роботов. Чаще всего это что-то такое на вид примитивное, вроде коробки с батарейками на колесиках, но жутко умное: все слышит, видит, препятствия объезжает. Вот видит он все как раз за счет фототранзистров или фотодиодов, а может даже и фоторезисторов.
Тут все происходит очень просто. Если это фоторезистор, достаточно подключить его, как указано на схеме, а в случае с фототранзистором или фотодиодом, чтобы не перепутать полярность предварительно «прозвонить» их, как было рассказано выше. Особенно полезно эту операцию проделать, если детали не новые, убедиться в их пригодности. Подключение разных фотодатчиков к микроконтроллеру показано на рисунке 4.
Рисунок 4. Схемы подключения фотодатчиков к микроконтроллеру
Измерение освещенности
Фотодиоды и фототранзисторы имеют малую чувствительность, высокую нелинейность и весьма узкий спектр. Основное применение этих фотоприборов – работа в ключевом режиме: включено – выключено. Поэтому создание измерителей освещенности на них достаточно проблематично, хотя раньше во всех аналоговых измерителях освещенности применялись именно эти фотодатчики.
Но к счастью нанотехнология на месте не стоит, а идет вперед семимильными шагами. Для измерения освещенности «там у них» создали специализированную микросхему TSL230R, представляющую собой программируемый преобразователь освещенность – частота.
Внешне устройство представляет собой микросхему в корпусе DIP8 из прозрачной пластмассы. Все сигналы входные и выходные по уровню совместимы с TTL — CMOS логикой, что позволяет легко сопрягать преобразователь с любым микроконтроллером.
С помощью внешних сигналов можно изменять чувствительность фотодиода и шкалу выходного сигнала соответственно 1, 10, 100 и 2, 10, и 100 раз. Зависимость частоты выходного сигнала от освещенности линейная, в пределах от долей герца до 1МГц. Настройки шкалы и чувствительности выполняются подачей логических уровней всего на 4 входа.
Микросхема может вводиться в режим микро потребления (5мкА) для чего есть отдельный вывод, хотя и в рабочем режиме не особенно прожорлива. При напряжении питания 2,7…5,5В потребляемый ток не более 2мА. Для работы микросхемы не требуется никакой внешней обвязки, разве что блокировочный конденсатор по питанию.
По сути, достаточно подключить к микросхеме частотомер и получать показания освещенности, ну, видимо, в каких-то УЕ. В случае же применения микроконтроллера ориентируясь на частоту выходного сигнала можно управлять освещенностью в помещении, или просто по принципу «включить – выключить».
TSL230R не единственный измеритель освещенности. Еще более совершенными являются датчики фирмы Maxim MAX44007-MAX44009. Габариты их меньше, чем у TSL230R, энергопотребление таково, как у других датчиков в спящем режиме. Основное назначение таких датчиков освещенности – применение в приборах с батарейным питанием.
Фотодатчики управляют освещением
Одной из задач, выполняемых при помощи фотодатчиков, является управление освещением. Такие схемы называются фотореле, чаще всего это простое включение освещения в темное время суток. С этой целью радиолюбителями было разработано немало схем, некоторые из которых мы рассмотрим в следующей статье.
- Компьютерные технологии на службе у радиолюбителя
- Мастерская радиолюбителя — инструменты, материалы и измерительные приборы для работы
- Как отремонтировать микроволновую печь своими руками
Надеюсь, что эта статья была для вас полезной. Смотрите также другие статьи в категории Электрическая энергия в быту и на производстве » Практическая электроника
Подписывайтесь на канал в Telegram про электронику для профессионалов и любителей: Практическая электроника на каждый день
Поделитесь этой статьей с друзьями:
Как применять фоторезисторы, фотодиоды и фототранзисторы
Датчики бывают совершенно разными. Они отличаются по принципу действию, логике своей работы и физическим явлениям и величинам на которые они способны реагировать. Датчики света используются не только в аппаратуре автоматического управления освещением, они используются в огромном количестве устройств, начиная от блоков питания, заканчивая сигнализациями и охранными системами.
Содержание статьи
- Фоторезисторы – изменяют сопротивление при освещении
- Фотодиод – преобразует свет в электрический заряд
- Фототранзисторы – открываются от количества падающего света
- Области применения фотоэлектронных приборов
- Применение для передачи сигналов в электронных схемах
- Управление симистором с помощью микроконтроллера
- Обратная связь с помощью оптопары
Основные виды фотоэлектронных приборов. Общие сведения
Фотоприёмник в общем смысле – это электронный прибор, который реагирует на изменение светового потока падающего на его чувствительную часть. Они могут отличаться, как по своей структуре, так и принципу работы. Давайте их рассмотрим.
Фоторезисторы – изменяют сопротивление при освещении
Фоторезистор – фотоприбор изменяющий проводимость (сопротивление) в зависимости от количества света падающего на его поверхность. Чем интенсивнее освещенность чувствительной области, тем меньше сопротивления. Вот его схематическое изображение.
Состоит он из двух металлических электродов, между которыми присутствует полупроводниковый материал. Когда световой поток попадает на полупроводник, в нём высвобождаются носители заряда, это способствует прохождению тока между металлическими электродами.
Энергия светового потока тратится на преодоление электронами запрещенной зоны и их переходу в зону проводимости. В качестве полупроводника у фоторезисторов используют материалы типа: Сульфид Кадмия, Сульфид Свинца, Селенит Кадмия и другие. От типа этого материала зависит спектральная характеристика фоторезистора
Интересно:
Спектральная характеристика содержит информацию о том, к каким длинам волн (цвету) светового потока наиболее чувствителен фоторезистор. Для некоторых экземпляров приходится тщательно подбирать излучатель света соответствующей длины волны, для достижения наибольшей чувствительности и эффективности работы.
Фоторезистор не предназначен для точного измерения освещенности, а, скорее, для определения наличия света, по его показаниям можно определить светлее или темнее стала окружающая среда. Вольт-амперная характеристика фоторезистора выглядит следующим образом.
На ней изображена зависимость тока от напряжения при различных величинах светового потока: Ф – темнота, а Ф3 – это яркий свет. Она линейна. Еще одна важная характеристика – это чувствительность, она измеряется в мА(мкА)/(Лм*В). Что отражает, сколько тока протекает через резистор, при определенном световом потоке и приложенном напряжении.
Темновое сопротивление – это активное сопротивление при полном отсутствии освещения, обозначается Rт, а характеристика Rт/Rсв – это кратность изменения сопротивления от состояния фоторезистора в полном отсутствии освещения к максимально освещенному состоянию и минимально возможному сопротивлению соответственно.
У фоторезисторов есть существенный недостаток – его граничная частота. Это величина описывает максимальную частоту синусоидального сигнала, которым вы моделируете световой поток, при которой чувствительность снижается на 1.41 раз. В справочниках это отражается либо значением частоты, либо через постоянную времени. Она отражает быстродействие приборов, которое обычно занимает десятки микросекунд – 10^(-5) с. Это не позволяет использовать его там, где нужно высокое быстродействие.
Фотодиод – преобразует свет в электрический заряд
Фотодиод – элемент, который преобразует свет, попадающий на чувствительную зону, в электрический заряд. Это происходит потому что при облучении в p-n переходе протекают различные процессы связанные с движением носителей заряда.
Если на фоторезисторе изменялась проводимость из-за движения носителей заряда в полупроводнике, то здесь происходит образование заряда на границе p-n перехода. Он может работать в режиме фотопреобразователя и фотогенератора.
По структуре он такой же, как и обычный диод, но на его корпусе есть окно для прохождения света. Внешне они бывают в различных исполнениях.
Фотодиоды с черным корпусом воспринимают только ИК-излучение. Черное покрытие – это что-то похожее на тонировку. Фильтрует ИК-спектр, чтобы исключить возможность срабатывания на излучения других спектров.
У фотодиодов, как и у фоторезисторов есть граничная частота, только здесь она на порядки больше и достигает 10 МГц, что позволяет обеспечить неплохое быстродействие. P-i-N фотодиоды обладают большим быстродействием – 100МГц-1ГГц, как и диоды на основании барьера Шоттки. Лавинные диоды имеют граничную частоту в порядка 1-10 ГГц.
В режиме фотопреобразователя такой диод работает как ключ управляемый светом, для этого его подключают в цепь в прямом смещении. То есть, катодом к точке с более положительным потенциалом (к плюсу), а анодом к более отрицательному (к минусу).
Когда диод не освещается светом – в цепи протекает только обратный темновой ток Iобрт (единицы и десятки мкА), а когда диод освещен к нему добавляется фототок, который зависит только от степени освещенности (десятки мА). Чем больше света – тем больше ток.
Фототок Iф равен:
где Sинт – интегральная чувствительность, Ф – световой поток.
Типовая схема включения фотодиода в режиме фотопреобразователя. Обратите внимание на то, как он подключен – в обратном направлении по отношению к источнику питания.
Другой режим – генератор. При попадании света на фотодиод на его выводах образуется напряжение, при этом токи короткого замыкания в таком режиме равняются десятки ампер. Это напоминает работу элементов солнечной батареи, но имеют малую мощность.
Фототранзисторы – открываются от количества падающего света
Фототранзистор – это по своей сути биполярный транзистор у которого вместо вывода базы есть в корпусе окошко для попадания туда света. Принцип работы и причины этого эффекта аналогичны с предыдущими приборами. Биполярные транзисторы управляются количеством тока протекающего через базу, а фототранзисторы по аналогии управляются количеством света.
Иногда на УГО еще дополнительно изображается вывод базы. Вообще напряжения на фототранзистор подают также как и на обычный, а второй вариант включения – с плавающей базой, когда базовый вывод остаётся незадействованным.
В схему включают фототранзисторы подобным образом.
Или меняют местами транзистор и резистор, смотря, что конкретно вам нужно. При отсутствии света через транзистор протекает темновой ток, который образуется из тока базы, который вы можете задать сами.
Задав необходимый ток базы, вы можете выставить чувствительность фототранзистора подбором его базового резистора. Таким образом, можно улавливать даже самый тусклый свет.
В советское время радиолюбители делали фототранзисторы своими руками – делали окошко для света, спилив обычному транзистору часть корпуса. Для этого отлично подходят транзисторы типа МП14-МП42.
Из вольтамперной характеристики видна зависимость фототока от освещения, при этом он практически не зависит от напряжения коллектор-эмиттер.
Кроме биполярных фототранзисторов существуют и полевые. Биполярные работают на частотах 10-100 кГц, то полевые более чувствительны. Их чувствительность достигает нескольких Ампер на Люмен, и более «быстрые» — до 100 мГц. У полевых транзисторов есть интересная особенность, при максимальных значениях светового потока напряжение на затворе почти не влияет на ток стока.
Области применения фотоэлектронных приборов
В первую очередь следует рассмотреть более привычные варианты их применения, например автоматическое включение света.
Схема, изображенная выше – это простейший прибор для включения и выключения нагрузки при определенной освещенности. Фотодиод ФД320 При попадании на него света открывается и на R1 падает определенное напряжение, когда его величина достаточна для открытия транзистора VT1 – он открывается, и открывает еще один транзистор – VT2. Эти два транзистора – это двухкаскадный усилитель тока, необходим для запитки катушки реле K1.
Диод VD2 – нужен для гашения ЭДС-самоиндукции, которое образуется при переключениях катушки. На подводящий контакт реле, верхний по схеме, подключается один из проводов от нагрузки (для переменного тока – фаза или ноль).
У нас есть нормально замкнутый и разомкнутый контакты, они нужны либо для выбора включаемой цепи, либо для выбора включить или отключить нагрузку от сети при достижении необходимой освещенности. Потенциометр R1 нужен для подстройки прибора для срабатывания при нужном количестве света. Чем больше сопротивление – тем меньше света нужно для включения схемы.
Вариации этой схемы используют в большинстве подобных приборов, при необходимости добавляя определенный набор функций.
Кроме включения нагрузки по освещенности подобные фотоприемники используются в различных системах контроля, например на турникетах метро часто используют фоторезисторы для определения несанкционированного (зайцем) пересечения турникета.
В типографии при обрыве полосы бумаги свет попадает на фотоприемник и тем самым даёт сигнал оператору об этом. Излучатель стоит по одну сторону от бумаги, а фотоприемник с обратной стороны. Когда бумага рвётся, свет от излучателя достигает фотоприемника.
В некоторых видах сигнализации используются в качестве датчиков входа в помещение излучатель и фотоприемник, при этом, чтобы излучение не были видны используют ИК-приборы.
Касаемо ИК-спектра, нельзя упомянуть о приемнике телевизора, на который поступают сигналы от ИК-светодиода в пульте дистанционного управления, когда вы переключаете каналы. Специальным образом кодируется информация и телевизор понимает, что вам нужно.
Информация таким образом ранее передавалась через ИК-порты мобильных телефонов. Скорость передачи ограничена, как последовательным способом передачи, так и принципом работы самого прибора.
В компьютерных мышках также используется технология связанная с фотоэлектронными приборами.
Применение для передачи сигналов в электронных схемах
Оптоэлектронные приборы – это приборы которые объединяют в одном корпусе излучатель и фотоприемник, типа описанных выше. Они нужны для связи двух контуров электрической цепи.
Это нужно для гальванической развязки, быстрой передачи сигнала, а также для соединения цепей постоянного и переменного тока, как в случае управления симистором в цепи 220 В 5 В сигналом с микроконтроллера.
Они имеют условно-графическое обозначение, которое содержит информацию о типе используемых внутри оптопары элементов.
Рассмотрим пару примеров использования таких приборов.
Управление симистором с помощью микроконтроллера
Если вы проектируете тиристорный или симисторный преобразователь вы столкнетесь с проблемой. Во-первых, если переход у управляющего вывода пробьет – на пин микроконтроллера попадет высокий потенциал и последний выйдет из строя. Для этого разработаны специальные драйверы, с элементом, который называется оптосимистор, например MOC3041.
Обратная связь с помощью оптопары
В импульсных стабилизированных блоках питания необходима обратная связь. Если исключить гальваническую развязку в этой цепи, тогда в случае выхода из строя каких-то компонентов в цепи ОС, на выходной цепи возникнет высокий потенциал и подключенная аппаратура выйдет из строя, я не говорю о том, что и вас может ударить током.
В конкретном примере вы видите реализацию такой ОС из выходной цепи в обмотку обратной связи (управляющую) транзистора с помощью оптопары с порядковым обозначением U1.
Выводы
Фото- и оптоэлектроника это очень важные разделы в электроники, которые значительно улучшили качество аппаратуры, её стоимость и надёжность. С помощью оптопары можно исключить использование развязывающего трансформатора в таких цепях, что уменьшает массогабаритные показатели. Кроме того некоторые устройства просто невозможно реализовать без таких элементов.
- Простейшие бестрансформаторные импульсные преобразователи напряжения
- Схемотехника блоков питания для светодиодных лент и не только
- Подключение и программирование Ардуино для начинающих
Надеюсь, что эта статья была для вас полезной. Смотрите также другие статьи в категории Электрическая энергия в быту и на производстве » Практическая электроника
Подписывайтесь на канал в Telegram про электронику для профессионалов и любителей: Практическая электроника на каждый день
Поделитесь этой статьей с друзьями: