Внутренняя энергия
Любая термодинамическая система состоит из атомов и молекул, находящихся в непрерывном движении. Количественной характеристикой движения является энергия.
Внутренняя энергия (U) характеризует общий запас энергии системы. Она включает все виды движения и взаимодействия частиц, составляющих систему: кинетическую энергию молекулярного движения, межмолекулярную энергию притяжения и отталкивания частиц, внутримолекулярную или химическую энергию, энергию электронного возбуждения, внутриядерную и лучистую энергию.
Величина внутренней энергии зависит от природы вещества, его массы и параметров состояния системы.
Определение полного запаса внутренней энергии вещества невозможно, т.к. нельзя перевести систему в состояние, лишенное внутренней энергии. Поэтому в термодинамике рассматривают изменение внутренней энергии (∆U), которое представляет собой разность величин внутренней энергии системы в конечном и начальном состояниях:
Бесконечно малое изменение внутренней энергии обозначают через du т.к. внутренняя энергия является функцией состояния и ее изменение не зависит от пути процесса, а определяется только начальным и конечным состоянием системы, то du будет полным дифференциалом. Величины ∆U и du считают положительными, если внутренняя энергия при протекании процесса возрастает, а отрицательными если убывает.
Теплота и работа
Передача энергии от системы к окружающей среде и наоборот осуществляется в виде теплоты (Q) и работы (А).
14.3. Тепловой баланс котельного агрегата.
Тепловой баланс котельного агрегата устанавливает равенство между поступающим в агрегат количеством теплоты и его расходом. На основании теплового баланса определяют расход топлива и вычисляют коэффициент полезного действия, эффективность работы котельного агрегата. В котельном агрегате химически связанная энергия топлива в процессе горения преобразуется в физическую теплоту горючих продуктов сгорания. Эта теплота расходуется на выработку и перегрев пара или нагревания воды. Вследствие неизбежных потерь при передаче теплоты и преобразования энергии вырабатываемый продукт (пар, вода и т.д.) воспринимает только часть теплоты. Другую часть составляют потери, которые зависят от эффективности организации процессов преобразования энергии (сжигания потлива) и передачи теплоты вырабатываемому продукту. Уравнение теплового баланса для установившегося теплового состояния агрегата записывают в следующем виде: Q p p=Q1+ Qп или
где Q p p– теплота, которой располагают; Q1– использованная теплота; Qп — общие потери; Q2– потери теплоты с уходящими газами; Q3– потери теплоты от химического недожога; Q4– потери теплоты от механической неполноты сгорания; Q5– потери теплоты в окружающую среду; Q6– потери теплоты с физической теплотой шлаков. Левая приходная часть уравнения теплового баланса (14.1) является суммой следующих величин:
где Qв.вн– теплота, вносимая в котлоагрегат с воздухом на 1 кг топлива; эта теплота учитывается тогда, когда воздух нагревается вне котельного агрегата (например, в паровых или электрических калориферах, устанавливаемых до воздухоподогревателя); если воздух нагревается только в воздухонагревателе, то, теплота не учитывается, так как она возвращается в топку агрегата; Qпар— теплота, вносимая в топку с дутьевым (форсуночным) паром на 1 кг потлива; Qфиз.т.— физическая теплота 1 кг или 1 м 3 топлива. Теплоту, вносимую с воздухом, рассчитывают по равенству:
где / — отношение количества воздуха на входе в воздухоподогреватель к теоретически необходимому; ср / = 1,33 кДж/(м 3 ·К), при температуре воздуха до 600К; Тг.вз, Тх.вз– температуры горячего о холодного воздуха, обычно Тх.вз= 300К. Теплоту, вносимую с паром для распыления мазута (форсуночный пар), находят по формуле:
где Wф– расход форсуночного пара, равный 0,3-0,4 кг/кг; iф– энтальпия форсуночного пара, кДж/кг; r – теплота парообразования, кДж/кг. Физическая теплота 1 кг топлива:
где ст– теплоемкость топлива, кДж/(кг· К); Тт– температура топлива. Если предварительный подогрев воздуха и топлива отсутствует и пар для распыления топлива не используется, то Q р р=Q р н.
Тема 15. Топочные устройства.
15.1. Топочные устройства.
Топка –один из основных элементов котельного агрегата. В ней происходит процесс горения, при котором химическая энергия топлива преобразуется в тепловую энергию продуктов сгорания, передаваемую далее жидкости и пару, находящимся в котле. Существующие топочные устройства можно разделить наслоевые икамерные.Слоевые топки предназначены для сжигания твердого топлива в слое на колосниковой решетке. Вкамерных топках сжигается твердое топливо во взвешенном состоянии в виде пыли и дробленых частиц, а также жидкое, распыляемое с помощью форсунок, и газообразное. Камерные топки подразделяются нафакельныеивихревые. На рис.15.1 показаны схемы слоевого, факельного и вихревого способов сжигания топлива. При слоевом способе сжигания необходимый для горения воздух попадается к слою топлива через колосниковую решетку.
При факельном способе сжигания твердое топливо предварительно размалывается в мельницах и пыль вместе с воздухом (аэросмесь) попадает в топку. Время пребывания газа и пыли в объеме топки незначительно (1,5-2 с). Циклонный способ сжигания основан на использовании закрученных топливовоздушных потоков. Транспорт топлива осуществляется воздухом. Топливные частицы циркулируют по определенным траекториям в течение времени, необходимого для завершения их сгорания. Под действием центробежных сил частицы движутся в виде уплотненного пристенного слоя, интенсивно перемешиваясь с воздухом. Время пребывания частиц в циклонной камере выбирается достаточным для выгорания грубой пыли (размер частиц – 200 мкм) или дробленого топлива (размер частиц до 5 мм).Слоевые топки. По способу механизации операций обслуживания (подача топлива, шировка слоя, удаление золв и шлака) слоевые топки делятся на ручные (немеханизированные),полумеханическиеимеханические. В полумеханических топках механизирована часть операций. В механических топках механизированы все операции. Классификации наиболее типичных и относительно широко распространенных топочных устройств со слоевым сжиганием топлива показана на рис.15.2.
В зависимости от способа организации процесса сжигания топлива слоевые топки можно разделить на три группы: 1) с неподвижной колосниковой решеткой и неподвижным слоем топлива (рис.15.2,а, б); 2) с неподвижной колосниковой решеткой и перемещением топлива по решетке (рис.15.2 в, г, д); 3) с подвижной колосниковой решеткой и движущимся вместе с ней слоем топлива (рис.15.2е). В показанную на рис.15.2,атопку топливо загружают вручную и вручную удаляют очаговые остатки через зольник. Из-за большой затраты физического труда топки этого типа используют только для котлов малой паропроизводительности (до 0,5 кг/с). На рис.15.2,б показана полумеханическая топка с пневмомеханическим забрасывателем (ПМЗ) (рис.15.3) и ручными поворачивающимися колосниками (РПК).
Топливо забрасывается питателем ПМЗ и равномерно распределяется по решетке, Удаляют очаговые остатки путем их сбрасывания в зольный бункер при повороте колосников около своей оси от ручного привода. В топке, показанной на рис. 15.2, в, загрузка осуществляется под воздействием собственного веса топлива. Топки с наклонной решеткой (с углом 40-50, что соответствует углу естественного откоса сжигаемого топлива) используют обычно для сжигания древесных отходов и кускового торфа. Возвратно-поступательное движение колосников на наклонно-переталкивающей решетке (рис. 15.2,г) дает возможность осуществить непрерывную шуровку слоя топлива, В таких топках возможно сжигание горючих сланцев, бурых углей с большой зольностью и повышенной влажностью и каменных углей с большим выходом летучих веществ. Топки с шурующей планкой (рис. 15.2,д) предназначены для сжигания многозольных бурых и неспекающихся каменных углей. Шурующая планка выполняется в виде трехгранной призмы из литого чугуна или стали. Угол наклона передней плоскости к горизонтальной плоскости составляет 35, а задней – 15. При движении вперед (к задней стенке топки) топливо подрезается задней гранью и осуществляется шуровка горящего слоя топлива.Камерные топки для сжигания твердого топлива используют в котельных агрегатах средней (10-42 кг/с) и большой ( 42 кг/с) производительности. Основные преимущества камерных топок заключаются в следующем: 1) возможность экономичного использования практически всех сортов угля, в том числе и низкокачественных, которые трудно сжигать в слое; 2) хорошее перемешивание топлива с воздухом, что позволяет работать с небольшим избытком воздуха (а=1,2-1,25); 3) возможность повышения единичной мощности котельного агрегата: 4) относительная простота регулирования режима работы и, следовательно, возможность полной автоматизации топочного процесса.
5.2. Тепловой баланс парового и водогрейного котла
При работе парового или водогрейного котла вся поступившая в него теплота расходуется на выработку полезной теплоты, содержащейся в паре или горячей воде, и на покрытие различных потерь теплоты. Суммарное количество теплоты, поступившее в котельный агрегат, называют располагаемой теплотой и обозначают . Между поступившей в котельный агрегат теплотой () и покинувшей его теплотой должно существовать равенство. Теплота, покинувшая котельный агрегат, представляет собой сумму полезной теплоты (Q1) и потерь теплоты, связанных с технологическим процессом выработки пара или горячей воды. Тепловым балансом парового или водогрейного котла называют равенство располагаемой теплоты сумме полезной теплоты и потерь теплоты, имеющихся при работе агрегата. Тепловой баланс осуществляется применительно к установившемуся тепловому режиму котла. Все статьи теплового баланса принято относить к 1 кг твердого и жидкого топлива или к 1м 3 газа при нормальных условиях, кДж/кг (кДж/м 3 )
, | (5.1) |
где Qв.вн – тепло, внесенное в топку воздухом, при его подогреве вне котла, кДж/кг (кДж/м 3 ); Qф – тепло, внесенное в топку паровым дутьем (“форсуночным” паром), кДж/кг (кДж/м 3 );– сумма всех потерь теплоты в паровом или водогрейном котле, кДж/кг (кДж/м 3 ). Потери теплоты в паровом или водогрейном котле складываются из потерь теплоты с уходящими газами (Q2), потерь от химической неполноты горения (Q3), от механической неполноты горения (Q4), от наружного охлаждения (Q5), потерь в виде физической теплоты шлака (Q6), кДж/кг (кДж/м 3 )
. | (5.2) |
Потеря теплоты с уходящими газами (Q2) обусловлена тем, что температура продуктов сгорания, покидающих агрегат, значительно выше температуры окружающего атмосферного воздуха. Потеря теплоты с уходящими газами является наибольшей из всех указанных выше потерь теплоты и зависит от сжигаемого топлива, нагрузки котлоагрегата, температуры и объема уходящих газов, температуры воздуха, забираемого дутьевым вентилятором. Потеря теплоты с уходящими газами для современных паровых и водогрейных котлов составляет 4–10 %. Потеря теплоты от химической неполноты горения (Q3) появляется при наличии в уходящих продуктах сгорания горючих газов CO, H2, CH4, т.е. при неполном горении. Потеря теплоты от химической неполноты горения зависит от вида топлива и содержания в нем летучих, способа сжигания топлива и конструкции топки, коэффициента избытка воздуха в топке, от уровня и распределения температуры в топочной камере, организации смесеобразовательных процессов в топке (горелке и топочной камере). Потеря теплоты от механической неполноты горения (Q4) появляется только при сжигании твердого топлива и обусловлена наличием в очаговых остатках, кроме золы топлива, твердых горючих частиц. Очаговые остатки покидают топку с провалом, шлаком и уносом. Под провалом понимают часть очаговых остатков, провалившуюся сквозь зазоры колосникового полотна. Часть очаговых остатков, организованно удаляемых из топки, называют шлаком. Часть очаговых остатков, которая выносится продуктами сгорания за пределы топочной камеры, называют уносом. Потеря теплоты от механической неполноты горения представляет собой сумму потерь теплоты с провалом, шлаком и уносом. Потери теплоты с уходящими газами, от химической и механической неполноты горения зависят от коэффициента избытка воздуха. При этом потеря теплоты с уходящими газами с ростом коэффициента избытка воздуха увеличивается, а потери от химической и механической неполноты горения (в определенном интервале изменения α) снижаются. Следовательно, существует такой коэффициент избытка воздуха, при котором сумма потерь теплоты с уходящими газами, от химической и механической неполноты горения минимальна. Этот коэффициент избытка воздуха называют оптимальным, т.е. наиболее выгодным. Потеря теплоты от наружного охлаждения (Q5) происходит потому, что обмуровка, изолированные и неизолированные элементы агрегата имеют температуру выше температуры окружающего воздуха. Потеря теплоты от наружного охлаждения зависит от теплопроводности обмуровки, ее толщины, поверхности стен, приходящейся на единицу паропроизводительности парового или теплопроизводительности водогрейного котла. Потеря теплоты в виде физической теплоты шлаков (Q6) обусловлена тем, что шлак, удаляемый из топки, имеет достаточно высокую температуру. Обычно принято потери теплоты в котельном агрегате выражать в процентах располагаемой теплоты, %
, | (5.3) |
, | (5.4) |
где q2–q6 – соответствующие потери теплоты, выраженные в процентах располагаемой теплоты. При тепловом расчете парогенератора или водогрейного котла тепловой баланс составляется для определения КПД брутто и расчетного расхода топлива. Коэффициентом полезного действия (КПД) парового или водогрейного котла называют отношение полезной теплоты к располагаемой теплоте. Не вся полезная теплота, выработанная агрегатом, направляется потребителям. Часть выработанной полезной теплоты в виде пара и электрической энергии расходуется на собственные нужды. Так, например, на собственные нужды расходуется пар на обдувку поверхностей нагрева, а электрическая энергия – для привода дымососа, вентилятора, питателей топлива, мельниц системы пылеприготовления и т.д. Под расходом на собственные нужды понимают расход всех видов энергии на производство пара или горячей воды. Поэтому различают КПД агрегата брутто и нетто. Если КПД агрегата определяется по выработанной теплоте, то его называют брутто, а если по отпущенной теплоте – нетто. Разность между выработанной и отпущенной теплотой представляет собой расход на собственные нужды. КПД брутто агрегата характеризует степень его технического совершенства, а КПД нетто – коммерческую экономичность. КПД брутто котельного агрегата можно определить по уравнению прямого баланса, %
(5.5) |
или по уравнению обратного баланса, если известны все потери, %
. | (5.6) |
Определение КПД по уравнению прямого баланса применяется преимущественно при отчетности за длительный промежуток времени (декада, месяц), а по уравнению обратного баланса – при испытании котельных агрегатов. Определение КПД по обратному балансу значительно точнее, так как погрешности при измерении потерь тепла меньше, чем при определении расхода топлива, особенно при сжигании твердого топлива. Зная величину КПД, можно определить расход топлива, подаваемого в топку котла, кг/с (м 3 /с)
; | (5.7) |
§ 1.2. Параметры внутренней баллистики
Параметрами внутренней баллистики являются физические величины, характеризующие те или иные свойства артиллерийской системы, состоящей из орудия, снаряда и порохового заряда.
Совокупность параметров внутренней баллистики определяет пиродинамические кривые и отдельные их элементы. Например, начальная скорость снаряда будет зависеть от большого числа параметров внутренней баллистики; изменить величину начальной скорости можно только путем изменения одного или нескольких из этих параметров; если же известно, что величина начальной скорости изменилась, то можно утверждать, что произошло изменение одного или нескольких параметров внутренней баллистикй.
Следовательно, зная параметры внутренней баллистики и характер их влияния, можно сознательно воздействовать на движение снаряда или объяснить отмеченные в движении снаряда особенности, что очень важно для артиллерийской практики.
Параметры внутренней баллистики можно разделить на три группы: конструктивные параметры, параметры условий заряжания и характеристики пороха.
К конструктивным параметрам относятся:
- калибр орудия d;
- площадь поперечного сечения канала ствола s;
- объем каморы W0—
— длина каморы lкам;
- приведенная длина каморы lо:
- коэффициент уширения каморы
- полная длина пути снаряда lд;
- длина канала ствола LKH:
- объем канала ствола
Калибр орудия равен диаметру канала ствола по полям нарезов. Площадь поперечного сечения канала ствола определяется с учетом нарезов по формуле где к,— коэффициент, зависящий от устройства нарезной части канала ствола: Ks =0,79 при отсутствии нарезов; Кч = 0,81 при глубине нарезов 1% калибра; к! = 0,83 при глубине нарезов 2% калибра. Объемом каморы называется объем заонарядного пространства в момент начала движения снаряда. При патронном заряжании за объем каморы принимают внутренний объем гильзы, спатронированной со снарядом. При раздельном заряжании за объем каморы принимают объем заснарядного пространства при досланном до упора в соединительный конус снаряде. Длина каморы равна расстоянию от дна канала ствола до дна снаряда в момент начала движения. Практически длину каморы можно измерить линейкой от дна досланного снаряда до казенного среза трубы ствола. Необходимо отличать действительную длину каморы от условной длины каморы Х0, которая измеряется с помощью прибора замера каморы (ПЗК). Условная длина будет больше приблизительно на расстояние от передней кромки ведущего пояска до дна снаряда ХСн: Приведенная длина каморы равна длине цилиндра с площадью основания s и объемом W0. Полная длина пути снаряда равна расстоянию от дна снаряда до дульного среза ствола (без дульного тормоза) в момент начала движения. Обычно бывает известна длина нарезной части канала ствола lн; зная ее, найдем Иногда к длине нарезной части канала ствола добавляют одну треть длины дульного тормоза. Длина ствола отличается от длины канала ствола на длину затвора (1-2) d. К параметрам условий заряжания относятся:
- масса снарядаq
- масса порохового заряда со;
- плотность заряжания
- давление форсированияр0
- коэффициент фиктивности ср;
- параметр заряжания проф. Н. Ф. Дроздова В.
Плотность заряжания А определяется путем деления величины массы заряда в кг на величину объема каморы в дм 3 (т. е. в л) и характеризует степень заполнения каморы порохом. Существует наивыгоднейшее значение плотности заряжания Ан, при котором дульная скорость снаряда для данной артиллерийской системы будет наибольшей при условии сохранения постоянной величины наибольшего давления пороховых газов. Наивыгоднейшая плотность заряжания зависит в основном от наибольшего Давления пороховых газоврт, давления форсированияр0 и кало- ПараметрыВ являются сложными параметрами, завися щими от других параметров внутренней баллистики. В дальнейшем будут даны определения этих параметров. К характеристикам пороха относятся:
- калорийность пороха Qw
- температура горения порохаТ,
- удельный объем пороховых газов W
- плотность пороха 5;
- сила пороха f
- коволюм пороховых газов а;
- толщина горящего свода порохового зерна 2е
- коэффициент скорости горения пороха u
- конечный импульс давления пороховых газов lк;
- коэффициенты формы порохового зерна х, X;
- параметр расширения пороховых газов 9.
В настоящее время в артиллерии применяются следующие сорта порохов: дымный, пироксилиновый, нитроглицериновый, нитродигликолевый, нитрогуанидиновый и нитроксилитановый. Каждый порох является метательным взрывчатым веществом, состоящим из горючего, окислителя, связующего и добавок. Дымный порох представляет собой механическую смесь калиевой селитры K2SO4 (окислитель, 75%), древесного угля С (горючее, 15%) и серы S (связующее, Ю°/0). При горении дымного пороха выделяется большое количество твердых остатков (до 56%), | образующих дым. Дымный порох употребляется в основном на изготовление воспламенителей зарядов. Остальные пороха являются бездымными порохами коллоидного типа. Основной частью бездымных порохов является пироксилин—продукт, полученный в результате обработки клетчатки азотной кислотой, с содержанием азота от 11 до 13,5%. С помощью растворителей: спирто-эфирной смеси, нитроглицерина, ацетона, нитродигликоля—производится желатинизация пироксилина и получаются бездымные пороха. При горении бездымные пороха почти полностью превращаются в пороховые газы. Состав пороховых газов зависит от состава пороха и давления пороховых газов. В табл. 1.2 приведен объемный процентный состав газов, образующихся при сгорании пироксилинового пороха с содержанием 11% азота. Отметим, что пороховые газы содержат окись углерода СО, водород Нг и метан СН4, которые при истечении пороховых газов из канала ствола способны соединяться с кислородом воздуха (гореть), образуя дульное или обратное пламя во время стрельбы. Калорийностью пороха, называется количество тепла, которое выделяется пороховыми газами, образовавшимися при сгорании 1 кг пороха, при охлаждении их до 18° С. Величинуопределяют путем сжигания навески пороха в калориметрической бомбе. В пороховых газах содержатся водяные пары, которые при их охлаждении конденсируются. Будем считать калорийностьпри воде газообразной. Величинау существующих бездымных порохов изменяется в пределах от Пороха, калорийность которых ближе к нижнему пределу, называются условно холодными, а пороха с калорийностью, близкой к верхнему пределу, — горячими. Калорийность порохаявляется одной из главных его характеристик, непосредственно влияющих на результаты стрельбы и на качества артиллерийской системы. Например, пороха с калорийностью,меньшей,дают, как правило, беспламен ный выстрел. Температурой горения пороханазывается температура, которую имеют пороховые газы в момент их образования. Непосредственное определение величиныв бомбе не обеспечивает достаточной точности, поэтому обычно величинувычисляют по опытной величине, предполагая, что все выделившееся при горении пороха тепло расходуется на нагрев продуктов взрывчатого превращения. У существующих порохов температура горения изменяется в пределах от 2100 до 3800° К. Удельным объемом пороховых газов, называется объем, занимаемый образовавшимися при сгорании 1 кг пороха пороховыми газами после расширения и охлаждения их до состояния, определяемого температурой 0°С и давлением 760 мм рт.ст. Удельный объем определяется с помощью газометра. У существующих бездымных порохов удельный объем пороховых газов изменяется в пределах от 750 до 1100 Плотностью пороха, называется масса пороха, заключенного в единице объема, при температуре 15° С и давлении 750 мм рт. ст. Плотность дымного пороха зависит от давления прессования и изменяется в пределах от 1,5 до 1,9. Плотность бездым ных порохов изменяется в пределах от 1,54 до 1,64 Силой пороха, называется величина, равная произведению удельной газовой постояннойна температуру горения пороха: Сила пороха может определяться экспериментально путем сжигания навески пороха в манометрической бомбе. Она выражает работу, которую мог бы совершить 1 кг пороховых газов, расширяясь при нагревании от нуля градусов до температуры горения при постоянном атмосферном давлении. Удельная газовая постоянная R зависит от молекулярного веса пороховых газов р,: Среднее значение R для пороховых газов равно 370 Величина силы пороха в основном зависит от калорийности пороха. Для всех существующих бездымных порохов можно принять следующую опытную зависимость: У существующих порохов сила пороха изменяется в пределах от 500-10 3 до 1200• 10 3 Коволюмом пороховых газов, называется объем, характеризующий объем молекул пороховых газов, образовавшихся при сгорании 1 кг пороха. Коволюм может определяться экспериментально путем сжигания навески пороха в манометрической бомбе. Величина коволюма входит в уравнение состояния реальных газов, например в уравнение вида и учитывает объем сфер действия молекул, который обычно принимают равным учетверенному объему самих молекул. Учет ково- люма производится только при высоких давлениях, какие имеют место в артиллерийских орудиях. В ракетных двигателях коволюм газов не учитывается. Во внутренней баллистике для определения коволюма используется соотношение Для всех существующих бездымных порохов можно принять следующую опытную зависимость коволюма от калорийности пороха: У существующих бездымных порохов коволюм изменяется в пределах от 0,8 до 1,2 дм 3 /кг. В табл.1.3 приведены средние значения рассмотренных характеристик для различных порохов. В артиллерии употребляются пороха, разнообразные по форме и размерам пороховых зерен. На рис. 1.3 изображены пороховые зерна различной формы: а) трубка; б) пруток; в) лента; г) пластинка; д) куб; е) кольцо; ж) спираль; з) семинакальное зерно. Пороха, имеющие форму цилиндрических зерен с каналами или без каналов, длина которых в два-три раза больше диаметра, называются зернеными порохами. Толщиной горящего свода порохового зерна 2ех называется наименьший линейный размер порохового зерна. Чем больше толщина горящего свода, тем дольше при прочих равных условиях горит пороховое зерно. Толщина горящего свода обычно увеличивается с увеличением калибра орудия. У существующих артиллерийских порохов толщина горящего свода изменяется в пределах от 0,1 до 5 мм. У порохов реактив- ной артиллерии толщина горящего свода достигает нескольких сантиметров. Остальные характеристики пороха ии 1 к, х, X, б будут рассмотрены ниже.