Каков ход лучей света 1 после преломления
УПС, страница пропала с радаров.
*размещая тексты в комментариях ниже, вы автоматически соглашаетесь с пользовательским соглашением
Вам может понравиться Все решебники
Андреев, Фёдоров
Рыбченкова
Рыбченкова, Александрова
Греков 10-11 класс
Греков, Крючков, Чешко
Габриелян, Остроумов, Сладков
Погорелов 7-9 класс
©Reshak.ru — сборник решебников для учеников старших и средних классов. Здесь можно найти решебники, ГДЗ, переводы текстов по школьной программе. Практически весь материал, собранный на сайте — авторский с подробными пояснениями профильными специалистами. Вы сможете скачать гдз, решебники, улучшить школьные оценки, повысить знания, получить намного больше свободного времени.
Главная задача сайта: помогать школьникам и родителям в решении домашнего задания. Кроме того, весь материал совершенствуется, добавляются новые сборники решений.
№1075 ГДЗ Рымкевич 10-11 класс (Физика)
Рассмотрим вариант решения задания из учебника Рымкевич 10-11 класс, Дрофа:
Каков ход лучей света I после преломления в линзах (рис. 117)? Каков ход лучей света 2 до преломления в линзах?
*Цитирирование задания со ссылкой на учебник производится исключительно в учебных целях для лучшего понимания разбора решения задания.
*размещая тексты в комментариях ниже, вы автоматически соглашаетесь с пользовательским соглашением
Построение в линзах
Для введённых нами линз существует два условно разных типа задач:
- задачи на построение в собирающей и рассеивающей линзах
- задачи на формулу для тонкой линзы
Первый тип задач основан на фактическом построении хода лучей от источника и поиска пересечения преломлённых в линзах лучей. Рассмотрим ряд изображений, полученных от точечного источника, который будем помещать на различных расстояниях от линз. Для собирающей и рассеивающей линзу существуют рассмотренные (не нами) траектории распространения луча (рис. 1) от источника .
Рис.1. Собирающая и рассеивающая линзы (ход лучей)
Для собирающей линзы (рис. 1.1) лучи:
- синий. Луч, идущий вдоль главной оптической оси, после преломления проходит через передний фокус.
- зелёный. Луч, проходящий через оптический центр линзы, не испытывает преломления (не отклоняется от первоначального направления).
- красный. Луч, идущий через передний фокус, после преломления распространяется параллельно главной оптической оси.
Пересечение любых из этих двух лучей (чаще всего выбирают лучи 1 и 2) дают изображение ().
Для рассеивающей линзы (рис. 1.2) лучи:
- синий. Луч, идущий параллельно главной оптической оси, преломляется так, что продолжения луча проходит через задний фокус.
- зелёный. Луч, проходящий через оптический центр линзы, не испытывает преломления (не отклоняется от первоначального направления).
Пересечение продолжений рассмотренных лучей даёт изображение ().
Аналогично сферическому зеркалу, получим набор изображений от предмета, расположенного на различных расстояниях от зеркала. Введём те же обозначения: пусть — расстояние от предмета до линзы, — расстояние от изображения до линзы, — фокусное расстояние (расстояние от фокуса до линзы).
Для собирающей линзы:
- (источник находится очень далеко от линзы). В этом случае мы можем считать, что все лучи от источника идут параллельно друг другу (рис. 2). Пустим два луча параллельно главной оптической оси линзы.
Рис. 2. Собирающая линза (источник в бесконечности)
Т.к. все лучи, идущие параллельно главной оптической оси линзы, после преломления в линзе проходят через фокус, то точка фокуса и является точкой пересечения преломлённых лучей, тогда она же и есть изображение источника (точечное, действительное).
- (источник находится за двойным фокусным расстоянием) (рис. 3).
Рис. 3. Собирающая линза (источник за двойным фокусом)
Воспользуемся ходом луча, идущего параллельно главной оптической оси (отражается в фокус) и идущего через главный оптический центр линзы (не преломляется). Для визуализации изображения введём описание предмета через стрелку. Точка пересечения преломившихся лучей — изображение (уменьшенное, действительное, перевёрнутое). Положение — между фокусом и двойным фокусом.
- (источник находится ровно в двойном фокусе) (рис. 4).
Рис. 4. Собирающая линза (источник в двойном фокусе)
Воспользуемся ходом луча, идущего параллельно главной оптической оси (отражается в фокус) и идущего через главный оптический центр линзы (не преломляется). Точка пересечения преломившихся лучей — изображение (того же размера, действительное, перевёрнутое). Положение — ровно в двойном фокусе.
- (источник между фокусом и двойным фокусом) (рис. 5)
Рис. 5. Собирающая линза (источник между двойным фокусом и фокусом)
Воспользуемся ходом луча, идущего параллельно главной оптической оси (отражается в фокус) и идущего через главный оптический центр линзы (не преломляется). Точка пересечения преломившихся лучей — изображение (увеличенное, действительное, перевёрнутое). Положение — за двойным фокусом.
- (источник находится ровно в фокусе собирающей линзы) (рис. 6)
Рис. 6. Собирающая линза (источник в фокусе)
Воспользуемся ходом луча, идущего параллельно главной оптической оси (отражается в фокус) и идущего через главный оптический центр линзы (не преломляется). В этом случае, оба преломлённых луча оказались параллельными друг другу, т.е. точка пересечения отражённых лучей отсутствует. Это говорит о том, что изображения нет.
- (источник находится между фокусом и главным оптическим центром) (рис. 7)
Рис. 7. Собирающая линза (источник перед фокусом)
Воспользуемся ходом луча, идущего параллельно главной оптической оси (отражается в фокус) и идущего через главный оптический центр линзы (не преломляется). Однако преломлённые лучи расходятся, т.е. сами преломлённые лучи не пересекутся, зато могут пересечься продолжения этих лучей. Точка пересечения продолжений преломлённых лучей — изображение (увеличенное, мнимое, прямое). Положение — по ту же сторону, что и предмет.
Для рассеивающей линзы построение изображений предметов практически не зависит от положения предмета, так что ограничимся произвольным положением самого предмета и характеристикой изображения.
- (источник находится очень далеко от линзы). В этом случае, мы можем считать, что все лучи от источника идут параллельно друг другу (рис. 8). Пустим два луча параллельно главной оптической оси линзы.
Рис. 8. Рассеивающая линза (источник в бесконечности)
Т.к. все лучи, идущие параллельно главной оптической оси линзы, после преломления в линзе должны проходить через фокус (свойство фокуса), однако после преломления в рассеивающей линзе лучи должны расходится. Тогда в фокусе сходятся продолжения преломившихся лучей. Тогда точка фокуса и является точкой пересечения продолжений преломлённых лучей, т.е. она же и есть изображение источника (точечное, мнимое).
- любое другое положение источника (рис. 9).
Рис. 9. Рассеивающая линза (произвольное положение источника)
Воспользуемся ходом луча, идущего параллельно главной оптической оси (продолжение отражённого луча проходит через передний фокус) и идущего через главный оптический центр линзы (не преломляется). Тогда изображением будет пересечение продолжений преломлённых лучей.
Второй тип задач связан с формулой тонкой линзы. Такие задачи основываются на числовых данных параметров, характеризующих положение источника, изображения или фокуса линзы. Рассмотрим произвольную систему (рис. 10). Пусть положение источника (), изображения () и фокуса системы () задано.
Рис. 10. Формула тонкой линзы
Тогда взаимосвязь между параметрами положения элементов можно описать формулой:
- где
- — фокусное расстояние линзы,
- — расстояние от предмета до линзы,
- — расстояние от изображения до линзы.
Важно: для использования формулы (1) необходимо помнить правило расстановки знаков. Если линза собирающая, то , если рассеивающая, то . В случае действительных предметов и изображений: , , а в случае мнимых предметов и изображений: и .
И последним параметром, характеризующим линзы или систему линз, является оптическая сила линзы (). Её нахождение довольно простое:
- где
- — оптическая сила линзы/системы линз,
- — фокус линзы/системы линз.
Размерность оптической силы линзы: м=дптр (диоптрии). Оптическая сила собирающей линзы положительна, рассеивающей — отрицательна.
Вывод: задачи с линзами, в целом, разделены на два класса. Задачи на построение основываются на рисунках 2-9. Достаточно проанализировать ход лучей и найти изображение (рис.1). Численные значения в дано указывают на задачи на формулу тонкой линзы (1).
Каков ход лучей света 1 после преломления
№ 1075(н). Каков ход лучей света 1 после преломления в линзах (рис. 117)? Каков ход лучей света 2 до преломления в линзах?
Нами был найден решебник к задачнику от 2001 года, а непосредственно задачник выпущен в 2006. Поскольку задачник переписывался, некоторых задач, которые есть в решебнике,- уже нет в задачнике, и наоборот. К сожалению, это одна из тех немногих задач. Придётся вам решать её самим =)
Решебник по физике за 10, 11 класс (А.П. Рымкевич, 2001 год),
задача №1075
к главе «ГЛАВА XIV. СВЕТОВЫЕ ВОЛНЫ. 47. Линзы».Тонкие линзы. Ход лучей.
Взгляните ещё раз на рисунки линз из предыдущего листка: эти линзы обладают заметной толщиной и существенной кривизной своих сферических границ. Мы намеренно рисовали такие линзы — чтобы основные закономерности хода световых лучей проявились как можно более чётко.
Понятие тонкой линзы.
Теперь, когда эти закономерности достаточно ясны, мы рассмотрим очень полезную идеализацию, которая называется тонкой линзой.
В качестве примера на рис. 1 приведена двояковыпуклая линза; точки и являются центрами её сферических поверхностей, и — радиусы кривизны этих поверхностей. — главная оптическая ось линзы.Рис. 1. К определению тонкой линзы Так вот, линза считается тонкой, если её толщина очень мала. Нужно, правда, уточнить: мала по сравнению с чем?
Во-первых, предполагается, что и . Тогда поверхности линзы хоть и будут выпуклыми, но могут восприниматься как «почти плоские». Этот факт нам очень скоро пригодится.
Во-вторых, , где — характерное расстояние от линзы до интересующего нас предмета. Собственно, лишь в таком случае мы и
сможем корректно говорить о «расстоянии от предмета до линзы», не уточняя, до какой именно точки линзы берётся это самое расстояние.Мы дали определение тонкой линзы, имея в виду двояковыпуклую линзу на рис. 1 . Это определение без каких-либо изменений переносится на все остальные виды линз. Итак: линза является тонкой, если толщина линзы много меньше радиусов кривизны её сферических границ и расстояния от линзы до предмета.
Условное обозначение тонкой собирающей линзы показано на рис. 2 .
Рис. 2. Обозначение тонкой собирающей линзы Условное обозначение тонкой рассеивающей линзы показано на рис. 3 .
Рис. 3. Обозначение тонкой рассеивающей линзы В каждом случае прямая — это главная оптическая ось линзы, а сами точки — её
фокусы. Оба фокуса тонкой линзы расположены симметрично относительно линзы.Оптический центр и фокальная плоскость.
Точки и , обозначенные на рис. 1 , у тонкой линзы фактически сливаются в одну точку. Это точка на рис. 2 и 3 , называемая оптическим центром линзы. Оптический центр находится на Пересечении линзы с её главной оптической осью.
Расстояние от оптического центра до фокуса называется фокусным расстоянием линзы. Мы будем обозначать фокусное расстояние буквой . Величина , обратная фокусному расстоянию, есть оптическая сила — линзы:
Оптическая сила измеряется в диоптриях (дптр). Так, если фокусное расстояние линзы равно 25 см, то её оптическая сила:
Продолжаем вводить новые понятия. Всякая прямая, проходящая через оптический центр линзы и отличная от главной оптической оси, называется побочной оптической осью . На рис. 4 изображена побочная оптическая ось — прямая .
Рис. 4. Побочная оптическая ось, фокальная плоскость и побочный фокус Плоскость , проходящая через фокус перпендикулярно главной оптической оси, называется фокальной плоскостью. Фокальная плоскость, таким образом, параллельна плоскости линзы. Имея два фокуса, линза соответственно имеет и две фокальных плоскости, расположенных симметрично относительно линзы.
Точка , в которой побочная оптическая ось пересекает фокальную плоскость, называется побочным фокусом. Собственно, каждая точка фокальной плоскости (кроме ) есть побочный фокус — мы ведь всегда сможем провести побочную оптическую ось, соединив данную точку с оптическим центром линзы. А сама точка — фокус линзы — в связи с этим называется ещё главным фокусом.
То, что на рис. 4 изображена собирающая линза, никакой роли не играет. Понятия побочной оптической оси, фокальной плоскости и побочного фокуса совершенно аналогично определяются и для рассеивающей линзы — с заменой на рис. 4 собирающей линзы на рассеивающую.
Теперь мы переходим к рассмотрению хода лучей в тонких линзах. Мы будем предполагать, что лучи являются параксиальными, то есть образуют достаточно малые углы с главной оптической осью. Если параксиальные лучи исходят из одной точки, то после прохождения линзы преломлённые лучи или их продолжения также пересекаются в одной точке. Поэтому изображения предметов, даваемые линзой, в параксиальных лучах получаются весьма чёткими.
Ход луча через оптический центр.
Как мы знаем из предыдущего раздела, луч, идущий вдоль главной оптической оси, не преломляется. В случае тонкой линзы оказывается, что луч, идущий вдоль побочной оптической оси, также не преломляется!
Объяснить это можно следующим образом. Вблизи оптического центра обе поверхности линзы неотличимы от параллельных плоскостей, и луч в данном случае идёт как будто через плоскопараллельную стеклянную пластинку (рис. 5 ).
Рис. 5. Ход луча через оптический центр линзы Угол преломления луча равен углу падения преломлённого луча на вторую поверхность. Поэтому второй преломлённый луч выходит из плоскопараллельной пластинки параллельно падающему лучу . Плоскопараллельная пластинка лишь смещает луч, не изменяя его направления, и это смещение тем меньше, чем меньше толщина пластинки.
Но для тонкой линзы мы можем считать, что эта толщина равна нулю. Тогда точки фактически сольются в одну точку, и луч окажется просто продолжением луча . Вот поэтому и получается, что луч, идущий вдоль побочной оптической оси, не преломляется тонкой линзой (рис. 6 ).
Рис. 6. Луч, идущий через оптический центр тонкой линзы, не преломляется Это единственное общее свойство собирающих и рассеивающих линз. В остальном ход лучей в них оказывается различным, и дальше нам придётся рассматривать собирающую и рассеивающую линзу по отдельности.
Ход лучей в собирающей линзе.
Как мы помним, собирающая линза называется так потому, что световой пучок, параллельный главной оптической оси, после прохождения линзы собирается в её главном фокусе (рис. 7 ).
Рис. 7. Параллельный пучок собирается в главном фокусе Пользуясь обратимостью световых лучей, приходим к следующему выводу: если в главном фокусе собирающей линзы находится точечный источник света, то на выходе из линзы получится световой пучок, параллельный главной оптической оси (рис. 8 ).
Рис. 8. Преломление пучка, идущего из главного фокуса Оказывается, что пучок параллельных лучей, падающих на собирающую линзу наклонно, тоже соберётся в фокусе — но в побочном. Этот побочный фокус отвечает тому лучу, который проходит через оптический центр линзы и не преломляется (рис. 9 ).
Рис. 9. Параллельный пучок собирается в побочном фокусе Теперь мы можем сформулировать правила хода лучей в собирающей линзе. Эти правила вытекают из рисунков 6-9 ,
1. Луч, идущий через оптический центр линзы, не преломляется.
2. Луч, идущий параллельно главной оптической оси линзы, после преломления пойдёт через главный фокус (рис. 10 ).Рис. 10. К правилу 2 3. Если луч падает на линзу наклонно, то для построения его дальнейшего хода мы проводим побочную оптическую ось, параллельную этому лучу, и находим соответствующий побочный фокус. Вот через этот побочный фокус и пойдёт преломлённый луч (рис. 11 ).
Рис. 11. К правилу 3 В частности, если падающий луч проходит через фокус линзы, то после преломления он пойдёт параллельно главной оптической оси.
Ход лучей в рассеивающей линзе.
Переходим к рассеивающей линзе. Она преобразует пучок света, параллельный главной оптической оси, в расходящийся пучок, как бы выходящий из главного фокуса (рис. 12 )
Рис. 12. Рассеяние параллельного пучка Наблюдая этот расходящийся пучок, мы увидим светящуюся точку, расположенную в фокусе позади линзы.
Если параллельный пучок падает на линзу наклонно, то после преломления он также станет расходящимся. Продолжения лучей расходящегося пучка соберутся в побочном фокусе , отвечающем тому лучу, который проходит через через оптический центр линзы и не преломляется (рис. 13 ).
Рис. 13. Рассеяние наклонного параллельного пучка Этот расходящийся пучок создаст у нас иллюзию светящейся точки, расположенной в побочном фокусе за линзой.
Теперь мы готовы сформулировать правила хода лучей в рассеивающей линзе. Эти правила следуют из рисунков 6, 12 и 13 .
1. Луч, идущий через оптический центр линзы, не преломляется.
2. Луч, идущий параллельно главной оптической оси линзы, после преломления начнёт удаляться от главной оптической оси; при этом продолжение преломлённого луча пройдёт через главный фокус (рис. 14 ).Рис. 14. К правилу 2 3. Если луч падает на линзу наклонно, то мы проводим побочную оптическую ось, параллельную этому лучу, и находим соответствующий побочный фокус. Преломлённый луч пойдёт так, словно он исходит из этого побочного фокуса (рис. 15 ).
Рис. 15. К правилу 3 Пользуясь правилами хода лучей 1–3 для собирающей и рассеивающей линзы, мы теперь научимся самому главному — строить изображения предметов, даваемые линзами.
Разберем задачи ЕГЭ по теме: Тонкие линзы.
1. На экране с помощью тонкой линзы получено изображение предмета с пятикратным увеличением. Экран передвинули на 30 см вдоль главной оптической оси линзы. Затем при неизменном положении линзы передвинули предмет, чтобы изображение снова стало резким. В этом случае получилось изображение с трехкратным увеличением. На сколько пришлось передвинуть предмет относительно первоначального положения?
Дано:
Г₁=5
Г₂=3
а = 30 см = 0,3 м.
Найти:
Δd — ?При решении этой задачи главным является создание модели, которая поясняет изменения в увеличении линзы и позволяет правильно определить перемещение экрана и предмета. На представленных ниже рис.1 и рис.2 выполнены все необходимые построения для двух случаев задачи. Так как увеличение линзы уменьшается, то предмет смещается в сторону двойного фокуса. Именно в этом случае возможно уменьшение изображения, по сравнению с первым случаем.
Особое внимание надо обратить на фразу, что изображение снова стало резким. Это возможно только при выполнении всех соотношений в формуле тонкой линзы
Для каждого случая запишем формулу тонкой линзы и учтем соотношения между d и f через значение увеличения (Г), даваемое линзой.
Тогда формулы (1) и (2) примут вид:
Остается решить следующую систему из двух уравнений:
Решение этой системы можно провести с подстановкой численных значений.
2. На оси ОХ в точке находится оптический центр тонкой рассеивающей линзы с фокусным расстоянием см, а в точке см – тонкой собирающей линзы. Главные оптические ос обеих линз лежат на оси ОХ. На рассеивающую линзу вдоль оси ОХ падает параллельный пучок света из области х 1.
Точечный источник и его изображение будут двигаться с разными линейными скоростями, но в тоже самое время период их обращения, частота обращения и угловые скорости у них будут равными. Радиусы окружностей, которые будут описывать источник света и его изображения, будут отличаться в 2 раза. Радиус окружности изображения R будет превышать радиус окружности источника r в 2 раза или
Воспользуемся формулой равенства периодов обращения.
4. Точечный источник света S расположен на расстоянии 40 cм от оптического центра тонкой собирающей линзы с фокусным расстоянием 0,2 м на её главной оптической оси АВ. На сколько сместиться вдоль прямой АВ изображение источника, если линзу повернуть на угол =30° относительно оси, перпендикулярной плоскости рисунка и проходящей через оптический центр линзы? Сделайте пояснительный чертеж, указав ход лучей в линзе для обоих случаев её расположения.
Дано:
cм = 0,4 м
F = 0,2 м
= 30°
Найти:
— ?Применим формулу тонкой линзы для первого случая.
Применим формулу тонкой линзы для второго случая.
Здесь необходимо учесть, что (м).
Изображение источника во втором случае также формируется на прямой АВ. Для нахождения расстояния необходимо
Таким образом, изображения источников в обоих случаях получились на прямой АВ на расстоянии (м).
Ответ: 0,14 м.Если вам нравятся наши материалы — записывайтесь на курсы подготовки к ЕГЭ по физике онлайн
Благодарим за то, что пользуйтесь нашими публикациями. Информация на странице «Тонкие линзы. Ход лучей.» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ. Чтобы успешно сдать необходимые и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий. Также вы можете воспользоваться другими материалами из данного раздела.
Каков ход лучей света 1 после преломления в линзах рисунок
Взгляните ещё раз на рисунки линз из предыдущего листка: эти линзы обладают заметной толщиной и существенной кривизной своих сферических границ. Мы намеренно рисовали такие линзы — чтобы основные закономерности хода световых лучей проявились как можно более чётко.
Понятие тонкой линзы.
Теперь, когда эти закономерности достаточно ясны, мы рассмотрим очень полезную идеализацию, которая называется тонкой линзой.
В качестве примера на рис. 1 приведена двояковыпуклая линза; точки и являются центрами её сферических поверхностей, и — радиусы кривизны этих поверхностей. — главная оптическая ось линзы.Рис. 1. К определению тонкой линзы Так вот, линза считается тонкой, если её толщина очень мала. Нужно, правда, уточнить: мала по сравнению с чем?
Во-первых, предполагается, что и . Тогда поверхности линзы хоть и будут выпуклыми, но могут восприниматься как «почти плоские». Этот факт нам очень скоро пригодится.
Во-вторых, , где — характерное расстояние от линзы до интересующего нас предмета. Собственно, лишь в таком случае мы и
сможем корректно говорить о «расстоянии от предмета до линзы», не уточняя, до какой именно точки линзы берётся это самое расстояние.Мы дали определение тонкой линзы, имея в виду двояковыпуклую линзу на рис. 1 . Это определение без каких-либо изменений переносится на все остальные виды линз. Итак: линза является тонкой, если толщина линзы много меньше радиусов кривизны её сферических границ и расстояния от линзы до предмета.
Условное обозначение тонкой собирающей линзы показано на рис. 2 .
Рис. 2. Обозначение тонкой собирающей линзы Условное обозначение тонкой рассеивающей линзы показано на рис. 3 .
Рис. 3. Обозначение тонкой рассеивающей линзы В каждом случае прямая — это главная оптическая ось линзы, а сами точки — её
фокусы. Оба фокуса тонкой линзы расположены симметрично относительно линзы.Оптический центр и фокальная плоскость.
Точки и , обозначенные на рис. 1 , у тонкой линзы фактически сливаются в одну точку. Это точка на рис. 2 и 3 , называемая оптическим центром линзы. Оптический центр находится на Пересечении линзы с её главной оптической осью.
Расстояние от оптического центра до фокуса называется фокусным расстоянием линзы. Мы будем обозначать фокусное расстояние буквой . Величина , обратная фокусному расстоянию, есть оптическая сила — линзы:
Оптическая сила измеряется в диоптриях (дптр). Так, если фокусное расстояние линзы равно 25 см, то её оптическая сила:
Продолжаем вводить новые понятия. Всякая прямая, проходящая через оптический центр линзы и отличная от главной оптической оси, называется побочной оптической осью . На рис. 4 изображена побочная оптическая ось — прямая .
Рис. 4. Побочная оптическая ось, фокальная плоскость и побочный фокус Плоскость , проходящая через фокус перпендикулярно главной оптической оси, называется фокальной плоскостью. Фокальная плоскость, таким образом, параллельна плоскости линзы. Имея два фокуса, линза соответственно имеет и две фокальных плоскости, расположенных симметрично относительно линзы.
Точка , в которой побочная оптическая ось пересекает фокальную плоскость, называется побочным фокусом. Собственно, каждая точка фокальной плоскости (кроме ) есть побочный фокус — мы ведь всегда сможем провести побочную оптическую ось, соединив данную точку с оптическим центром линзы. А сама точка — фокус линзы — в связи с этим называется ещё главным фокусом.
То, что на рис. 4 изображена собирающая линза, никакой роли не играет. Понятия побочной оптической оси, фокальной плоскости и побочного фокуса совершенно аналогично определяются и для рассеивающей линзы — с заменой на рис. 4 собирающей линзы на рассеивающую.
Теперь мы переходим к рассмотрению хода лучей в тонких линзах. Мы будем предполагать, что лучи являются параксиальными, то есть образуют достаточно малые углы с главной оптической осью. Если параксиальные лучи исходят из одной точки, то после прохождения линзы преломлённые лучи или их продолжения также пересекаются в одной точке. Поэтому изображения предметов, даваемые линзой, в параксиальных лучах получаются весьма чёткими.
Ход луча через оптический центр.
Как мы знаем из предыдущего раздела, луч, идущий вдоль главной оптической оси, не преломляется. В случае тонкой линзы оказывается, что луч, идущий вдоль побочной оптической оси, также не преломляется!
Объяснить это можно следующим образом. Вблизи оптического центра обе поверхности линзы неотличимы от параллельных плоскостей, и луч в данном случае идёт как будто через плоскопараллельную стеклянную пластинку (рис. 5 ).
Рис. 5. Ход луча через оптический центр линзы Угол преломления луча равен углу падения преломлённого луча на вторую поверхность. Поэтому второй преломлённый луч выходит из плоскопараллельной пластинки параллельно падающему лучу . Плоскопараллельная пластинка лишь смещает луч, не изменяя его направления, и это смещение тем меньше, чем меньше толщина пластинки.
Но для тонкой линзы мы можем считать, что эта толщина равна нулю. Тогда точки фактически сольются в одну точку, и луч окажется просто продолжением луча . Вот поэтому и получается, что луч, идущий вдоль побочной оптической оси, не преломляется тонкой линзой (рис. 6 ).
Рис. 6. Луч, идущий через оптический центр тонкой линзы, не преломляется Это единственное общее свойство собирающих и рассеивающих линз. В остальном ход лучей в них оказывается различным, и дальше нам придётся рассматривать собирающую и рассеивающую линзу по отдельности.
Ход лучей в собирающей линзе.
Как мы помним, собирающая линза называется так потому, что световой пучок, параллельный главной оптической оси, после прохождения линзы собирается в её главном фокусе (рис. 7 ).
Рис. 7. Параллельный пучок собирается в главном фокусе Пользуясь обратимостью световых лучей, приходим к следующему выводу: если в главном фокусе собирающей линзы находится точечный источник света, то на выходе из линзы получится световой пучок, параллельный главной оптической оси (рис. 8 ).
Рис. 8. Преломление пучка, идущего из главного фокуса Оказывается, что пучок параллельных лучей, падающих на собирающую линзу наклонно, тоже соберётся в фокусе — но в побочном. Этот побочный фокус отвечает тому лучу, который проходит через оптический центр линзы и не преломляется (рис. 9 ).
Рис. 9. Параллельный пучок собирается в побочном фокусе Теперь мы можем сформулировать правила хода лучей в собирающей линзе. Эти правила вытекают из рисунков 6-9 ,
1. Луч, идущий через оптический центр линзы, не преломляется.
2. Луч, идущий параллельно главной оптической оси линзы, после преломления пойдёт через главный фокус (рис. 10 ).Рис. 10. К правилу 2 3. Если луч падает на линзу наклонно, то для построения его дальнейшего хода мы проводим побочную оптическую ось, параллельную этому лучу, и находим соответствующий побочный фокус. Вот через этот побочный фокус и пойдёт преломлённый луч (рис. 11 ).
Рис. 11. К правилу 3 В частности, если падающий луч проходит через фокус линзы, то после преломления он пойдёт параллельно главной оптической оси.
Ход лучей в рассеивающей линзе.
Переходим к рассеивающей линзе. Она преобразует пучок света, параллельный главной оптической оси, в расходящийся пучок, как бы выходящий из главного фокуса (рис. 12 )
Рис. 12. Рассеяние параллельного пучка Наблюдая этот расходящийся пучок, мы увидим светящуюся точку, расположенную в фокусе позади линзы.
Если параллельный пучок падает на линзу наклонно, то после преломления он также станет расходящимся. Продолжения лучей расходящегося пучка соберутся в побочном фокусе , отвечающем тому лучу, который проходит через через оптический центр линзы и не преломляется (рис. 13 ).
Рис. 13. Рассеяние наклонного параллельного пучка Этот расходящийся пучок создаст у нас иллюзию светящейся точки, расположенной в побочном фокусе за линзой.
Теперь мы готовы сформулировать правила хода лучей в рассеивающей линзе. Эти правила следуют из рисунков 6, 12 и 13 .
1. Луч, идущий через оптический центр линзы, не преломляется.
2. Луч, идущий параллельно главной оптической оси линзы, после преломления начнёт удаляться от главной оптической оси; при этом продолжение преломлённого луча пройдёт через главный фокус (рис. 14 ).Рис. 14. К правилу 2 3. Если луч падает на линзу наклонно, то мы проводим побочную оптическую ось, параллельную этому лучу, и находим соответствующий побочный фокус. Преломлённый луч пойдёт так, словно он исходит из этого побочного фокуса (рис. 15 ).
Рис. 15. К правилу 3 Пользуясь правилами хода лучей 1–3 для собирающей и рассеивающей линзы, мы теперь научимся самому главному — строить изображения предметов, даваемые линзами.
Разберем задачи ЕГЭ по теме: Тонкие линзы.
1. На экране с помощью тонкой линзы получено изображение предмета с пятикратным увеличением. Экран передвинули на 30 см вдоль главной оптической оси линзы. Затем при неизменном положении линзы передвинули предмет, чтобы изображение снова стало резким. В этом случае получилось изображение с трехкратным увеличением. На сколько пришлось передвинуть предмет относительно первоначального положения?
Дано:
Г₁=5
Г₂=3
а = 30 см = 0,3 м.
Найти:
Δd — ?При решении этой задачи главным является создание модели, которая поясняет изменения в увеличении линзы и позволяет правильно определить перемещение экрана и предмета. На представленных ниже рис.1 и рис.2 выполнены все необходимые построения для двух случаев задачи. Так как увеличение линзы уменьшается, то предмет смещается в сторону двойного фокуса. Именно в этом случае возможно уменьшение изображения, по сравнению с первым случаем.
Особое внимание надо обратить на фразу, что изображение снова стало резким. Это возможно только при выполнении всех соотношений в формуле тонкой линзы
Для каждого случая запишем формулу тонкой линзы и учтем соотношения между d и f через значение увеличения (Г), даваемое линзой.
Тогда формулы (1) и (2) примут вид:
Остается решить следующую систему из двух уравнений:
Решение этой системы можно провести с подстановкой численных значений.
2. На оси ОХ в точке находится оптический центр тонкой рассеивающей линзы с фокусным расстоянием см, а в точке см – тонкой собирающей линзы. Главные оптические ос обеих линз лежат на оси ОХ. На рассеивающую линзу вдоль оси ОХ падает параллельный пучок света из области х 1.
Точечный источник и его изображение будут двигаться с разными линейными скоростями, но в тоже самое время период их обращения, частота обращения и угловые скорости у них будут равными. Радиусы окружностей, которые будут описывать источник света и его изображения, будут отличаться в 2 раза. Радиус окружности изображения R будет превышать радиус окружности источника r в 2 раза или
Воспользуемся формулой равенства периодов обращения.
4. Точечный источник света S расположен на расстоянии 40 cм от оптического центра тонкой собирающей линзы с фокусным расстоянием 0,2 м на её главной оптической оси АВ. На сколько сместиться вдоль прямой АВ изображение источника, если линзу повернуть на угол =30° относительно оси, перпендикулярной плоскости рисунка и проходящей через оптический центр линзы? Сделайте пояснительный чертеж, указав ход лучей в линзе для обоих случаев её расположения.
Применим формулу тонкой линзы для первого случая.
Применим формулу тонкой линзы для второго случая.
Здесь необходимо учесть, что (м).
Изображение источника во втором случае также формируется на прямой АВ. Для нахождения расстояния необходимо
Таким образом, изображения источников в обоих случаях получились на прямой АВ на расстоянии (м).
Ответ: 0,14 м.Если вам нравятся наши материалы — записывайтесь на курсы подготовки к ЕГЭ по физике онлайн
Спасибо за то, что пользуйтесь нашими материалами. Информация на странице «Тонкие линзы. Ход лучей.» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ. Чтобы успешно сдать нужные и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий. Также вы можете воспользоваться другими материалами из данного раздела.
Преломление света
Проведем опыт. Поместим в центр оптического диска стеклянную пластину и направим на нее луч света. Мы увидим, что на границе воздуха со стеклом свет не только отразится, но и проникнет внутрь стекла, изменив направление своего распространения (рис. 84).
Изменение направления распространения света при его прохождении через границу раздела двух сред называется преломлением света.
На рисунке 84 обозначены: AO — падающий луч; OB — отраженный луч; OE — преломленный луч.
Заметим, что если бы мы направили луч по направлению EO, то в силу обратимости световых лучей он вышел бы из стекла по направлению OA.
Преломление света объясняется изменением скорости распространения света при его переходе из одной среды в другую. Впервые такое объяснение этому явлению дал в середине XVII в. патер Меньян. Согласно Меньяну, при переходе света из одной среды в другую луч света изменяет свое направление аналогично тому, как изменяется направление движения «солдатского фронта», когда луг, по которому идут солдаты, преграждается пашней, граница которой проходит под углом к фронту. Каждый из солдат, достигших пашни, замедляет свое движение, в то время как те из солдат, которые еще не достигли ее, продолжают идти с прежней скоростью. В результате этого солдаты, вступившие на пашню, начинают отставать от идущих по лугу, и колонна войск разворачивается (рис. 85).
Чтобы определить, в какую сторону будет отклоняться луч света при его переходе через границу раздела двух сред, надо знать, в какой из этих сред скорость света меньше, а в какой больше.
Свет — это электромагнитные волны. Поэтому все, что говорилось о скорости распространения электромагнитных волн (см. § 28), в равной степени относится и к скорости света. Так, например, скорость света в вакууме максимальна и равна:
c = 299792 км/с ≈ 300000 км/с.
Скорость света в веществе v всегда меньше, чем в вакууме:
Значения скорости света в различных средах приведены в таблице 6.
Из двух сред та, в которой скорость света меньше, называется оптически более плотной, а та, в которой скорость света больше, — оптически менее плотной. Например, вода является оптически более плотной средой, чем воздух, а стекло — оптически более плотной средой, чем вода.
Опыт показывает, что, попадая в среду, оптически более плотную, луч света отклоняется от своего первоначального направления в сторону к перпендикуляру к границе раздела двух сред (рис. 86, а), а попадая в среду, оптически менее плотную, луч света отклоняется в обратную сторону (рис. 86, б).
Угол между преломленным лучом и перпендикуляром к границе раздела двух сред в точке падения луча называется углом преломления. На рисунке 86
α — угол падения, β — угол преломления.
Из рисунка 86 видно, что угол преломления может быть как больше, так и меньше угла падения. Могут ли эти углы совпадать? Могут, но только тогда, когда луч света падает на границу раздела сред под прямым углом к ней; в этом случае α = β = 0.
Способность преломлять лучи у разных сред различна. Чем значительнее отличаются скорости света в двух средах, тем сильнее преломляются лучи на границе между ними.
Одной из основных деталей многих оптических приборов является стеклянная треугольная призма (рис. 87, а). На рисунке 87, б показан ход луча в такой призме: в результате двукратного преломления треугольная призма отклоняет падающий на нее луч в сторону к своему основанию.
Преломление света является причиной того, что глубина водоема (реки, пруда, ванны с водой) кажется нам меньше, чем на самом деле. Ведь, чтобы увидеть какую-либо точку S на дне водоема, надо, чтобы лучи света, вышедшие из нее, попали в глаз наблюдателя (рис. 88). Но после преломления на границе воды с воздухом пучок света будет восприниматься глазом как свет, идущий из мнимого изображения S1, находящегося выше, чем соответствующая точка S на дне водоема. Можно доказать, что кажущаяся глубина водоема h составляет примерно ¾ его истинной глубины H.
Впервые это явление было описано Евклидом. В одной из его книг рассказывается об опыте с кольцом. Наблюдатель смотрит на кубок с лежащим на его дне кольцом так, что края кубка не позволяют его увидеть; затем, не меняя положение глаз, в кубок начинают наливать воду, и через некоторое время кольцо становится видимым.
Преломлением света объясняются и многие другие явления, например кажущийся излом ложки, опущенной в стакан с водой; более высокое, чем на самом деле, положение звезд и Солнца над горизонтом и др.
. 1. Что называют преломлением света? 2. Какой угол называют углом преломления? Как он обозначается? 3. Чему равна скорость света в вакууме? 4. Какая среда является оптически более плотной: лед или кварц? Почему? 5. В каком случае угол преломления света меньше угла падения и в каком больше? 6. Чему равен угол падения луча, если преломленный луч перпендикулярен границе раздела сред? 7. Почему наблюдателю, смотрящему сверху на воду, глубина водоема кажется меньше, чем на самом деле? Какой будет казаться глубина реки, если в действительности она равна 2 м? 8. В воздухе находятся куски стекла, кварца и алмаза. На чьей поверхности лучи света преломляются сильнее всего?
Экспериментальное задание. Повторите опыт Евклида. Положите на дно чайной чашки кольцо (или монету), после чего расположите ее перед собой так, чтобы края чашки закрывали ее дно. Если, не меняя взаимного расположения чашки и глаз, налить в нее воду, то кольцо (или монета) становится видимым. Почему?
Похожие публикации:
- Как сделать двигатель для самолета
- Вру нежилого помещения что это
- Как прошить ардуино уно
- Кто выдает наряд допуск на производство работ