Три фазы — как это работает с нулем и без нуля (нейтрали)
Три фазы — это основные части многофазной системы электрических цепей. Все мы знаем, что в наши дома электроэнергия поступает по двум проводам — фазе (фазный провод) и нулю (нейтральный провод). Но как правило у большинства людей понимание протекающих процессов ограничивается несколькими базовыми примерами, и часто оно не верное. В данном обзоре мы постараемся разобраться по возможности простыми словами с тремя фазами — особенностью протекания тока в трехфазной системе с нейтральным проводом и без него.
Три фазы — основы
Трехфазная цепь — это совокупность трех электрических цепей, в которых действуют синусоидальные ЭДС, одинаковые по амплитуде и частоте, сдвинутые по фазе одна от другой на угол 120° (2π/3) и создаваемые общим источником энергии. Расшифруем это определение. В нем упоминаются следующие понятия:
- Общий источник энергии — это трехфазный генератор на электростанции, вырабатывающий напряжение порядка 10000 Вольт. Промежуточное звено между генератором и конечным потребителем — распределительный трансформатор, который условно можно заменить генератором 230 Вольт.
- Синусоидальные ЭДС сдвинутые по фазе одна от другой на угол 120°. Получение ЭДС (электродвижущей силы) основано на принципе электромагнитной индукции. При этом три фазы обмотки статора генератора повернуты в пространстве друг относительно друга на 1/3 часть окружности, то есть магнитные оси фаз повернуты в пространстве на угол 120°.
- Синусоидальные ЭДС, одинаковые по амплитуде и частоте. Если рассмотреть последний участок трансформации напряжения, то при привычном действующем напряжении 230 Вольт амплитуда каждой фазы 325 Вольт (230×√2). Частота ЭДС определяется частотой вращения ротора генератора. Частота 50 Гц значит, что ток пятьдесят раз в секунду идет в одну сторону и пятьдесят раз в обратную. При этом сто раз в секунду он достигает амплитудного значения и сто раз становится равным нулю. Смена направления происходит при переходе графика синусоиды через нулевое значение.
Термин «фаза» имеет в электротехнике два значения:
- Фазой называют аргумент синуса (ωt + Ψ). Любая синусоидально изменяющаяся функция определяется тремя величинами: амплитудой, угловой частотой (ω ) и начальной фазой Ψ (пси). Фаза характеризует состояние колебания (числовое значение) в данный момент времени t.
- Каждая отдельная цепь, входящая в трехфазную цепь принято называть фазой.
Трехфазные цепи имеют широкое распространение за счет следующих преимуществ:
- Экономичности производства и передачи энергии по сравнению с однофазными цепями.
- Возможности простого получения кругового вращающегося магнитного поля, необходимого для трехфазного асинхронного двигателя.
- Возможности получения в одной установке двух эксплуатационных напряжений — фазного и линейного.
Основными элементами трехфазной цепи являются:
- Трехфазный генератор, преобразующий механическую энергию в электрическую.
- Трансформатор напряжения. Для передачи электроэнергии на большие расстояния напряжения электрического тока с помощью силовых трансформаторов повышают до сотен тысяч вольт. Конечные же потребители используют ток после силового понижающего трансформатора.
- Линии электропередач — один из компонентов электрической сети, система энергетического оборудования, предназначенная для передачи электроэнергии посредством электрического тока (токопроводы, кабельные и воздушные линии).
- Приемники (потребители), которые могут быть как трехфазными (например, трехфазные асинхронные двигатели), так и однофазными (например, лампы накаливания).
Каждая из трех фаз в цепи имеет стандартное наименование и цветовую маркировку:
- Первая фаза обозначается латинской буквой A и желтым цветом .
- Вторая фаза обозначается латинской буквой B и зеленым цветом .
- Третья фаза обозначается латинской буквой C и красным цветом .
Если идет речь о конкретном элементе цепи, например трехфазном генераторе, трансформаторе, то в данном случае фаза — это одна из трех обмоток генератора (трансформатора), имеющая начало и конец.
Начала обмоток фаз обозначаются латинскими буквами А, В, С, а
концы фаз — X, Y, Z.
Три фазы без нуля
Все дома и квартиры можно условно назвать однофазными приемниками (потребителями), являющимися элементами трехфазной цепи. Но если рассмотреть совокупность однофазных приемников, то по отношению к источнику (распределительному трансформатору) они выступают как одна трехфазная нагрузка. И именно переход от отдельных однофазных потребителей к их общему трехфазному потреблению вызывает много вопросов у многих интересующихся темой электротехники людей. До сих пор в понимании многих электрический ток приходит в дом по фазе и уходит обратно к трансформатору по нулю (нейтральному проводу). Но как он уходит правильно, об этом к сожалению не многие знают. Постараемся содержательно и предельно понятно раскрыть этот вопрос на примере трех фаз и нагрузок в системе без нуля (нейтрального провода).
Для начала рассмотрим пример электроснабжения условной улицы, дома на которой равномерно подключены к трем фазам, идущим от распределительного трансформатора. Воспользовавшись программой Multisim отобразим это схематически:
Расшифруем трехфазную электрическую цепь:
- V1 — трехфазный генератор 230 В. В нашем случае он заменяет понижающий распределительный трансформатор.
- Отходящие от него три фазы выделены соответствующими цветами — желтый, зеленый красный. Резисторы RPA1-RPA3, RPB1-RPB3, RPC1-RPC3 — условные сопротивления участков фазных проводов.
- Точка соединения концов фазных обмоток заземлена. Сопротивление заземлителя нейтрали трансформатора RZN = 4 Ом (глухозаземленная нейтраль).
- Отходящий от трансформатора нейтральный провод отмечен голубым цветом. Он также имеет определенное сопротивление, складывающееся из сопротивлений RPN1-RPN3.
- RA1-RA3, RB1-RB3, RC1-RC3 — нагрузки в домах, подключенных к одной из трех фаз воздушной линии.
Возможно кто-то посчитает схему сложной и непонятной, так как электроснабжение домов от распределительного трансформатора фактически показано с использованием лишь сопротивлений (резисторов). Но на электрических схемах многие их элементы, например лампочки, электродвигатели, соединительные провода, часто отображают в виде сопротивлений. Это вполне допустимо, так как при расчетах и анализе схемы достаточно знать лишь сопротивление R того или иного элемента. Да и самому электроприбору не требуется от генератора (силового распределительного трансформатора) каких либо специальных условий. Подключенному в цепь приемнику (нагрузке) достаточно получить необходимое напряжение (U). А с учетом сопротивления легко просчитывается сила тока в цепи (I = U/R) и мощность, потребляемая приемником (P = UI).
Для понимания рассмотрим любой дом (нагрузку) и разберемся, почему он на схеме отмечен резистором с определенным сопротивлением. Электроприборы, включенные в сеть, потребляют определенную мощность:
В приведенном примере холодильник, тостер, электроплита и стиральная машина в совокупности имеют мощность потребления (P) 40+700+2000+260 = 3000 Вт. Зная напряжение U = 230 В, нетрудно определить общее сопротивление по следующий формуле R = U²/P = 230²/300 ≈ 17,6 Ом. По данной формуле также можно рассчитать сопротивление каждого электроприбора по отдельности, и для получении общего сопротивления воспользоваться правилом параллельного соединения.
Разобравшись, что потребление электроэнергии домом либо иной электроустановкой можно на схеме изобразить в виде сопротивления, перейдем к следующему важному вопросу. Многие неверно представляют путь движения тока в трехфазной электрической цепи. Упрощенно они считают, что ток в розетку приходит по фазе, запитывает электроприборы, а затем уходит по нулю (нейтральному проводу) в распределительный трансформатор. Но на самом деле все намного сложнее. Постараемся доступно рассмотреть особенности трех фаз и значение нейтрального провода.
Для начала в приведенную выше схему добавим четыре амперметра на три фазы и нейтральный провод:
Какой вывод можно сделать, если проанализировать силу тока по трем фазам IA = 49,2 А, IB = 48,8 А, IC = 48,9 А? Из приведенных данных следует, что три фазы нагружены почти равномерно. Теперь проанализируем силу тока, возвращающегося по нейтральному проводу в точку соединения концов обмоток фаз в трансформаторе. Амперметр IN показывает 0,3 А. То есть озвученный выше тезис, что ток приходит по фазе, а затем уходит по нулю (нейтральному проводу) в распределительный трансформатор, в корне не верный. В данном примере токи в трех фазах циркулируют между содой, и лишь незначительная часть, равная геометрической сумме этих токов, возвращается в нулевую точку (нейтраль) трансформатора.
При соединении нагрузок (домов) в звезду линейные токи I и фазные токи Iф равны. А в соответствии с первым законом Кирхгофа ток в нулевом проводе равен геометрической сумме линейных (фазных) токов: IN = IA+IB+IC. При симметричной нагрузке ZA = ZB = ZC ток в нулевом проводе IN = 0 и, следовательно, необходимость в таком проводе отпадает. Естественно, когда в трехфазной цепи нагрузки — это дома или квартиры, добиться идеальной симметрии потребления электроэнергии невозможно. Для примера, симметричными трехфазными приемниками являются трехфазные электродвигатели. Однако, чтобы понять, как ток распространяется в трехфазной цепи, можно допустить симметричную нагрузку домами или квартирами. Что мы и сделаем:
Сразу отметим, раз уж мы сделали допущение о симметричной нагрузке (сопротивление потребителей каждого дома по 15 Ом), то также упростим схему, убрав сопротивления проводов. Что в итоге получилось:
- Сила тока по трем фазам стала одинаковой IA = IB = IC ≈ 46 А.
- Сила тока в нейтральном проводе стала равна нулю IN ≈ 0 А.
Соответственно, как и отмечалось выше, при симметричной нагрузке ток в нулевом проводе IN = 0, и необходимость в таком проводе отпадает (что и показано во второй части схемы). К сожалению, не все понимают, что значит убрать из схемы нейтральный (нулевой) провод. В вашей розетке он остается, а убирается он лишь на участке соединения двух нулевых (общих) точек соединения обмоток генератора и соединения приемников (домов) звездой. И если вы посмотрите на вторую часть приведенной выше схемы, оставшийся нейтральный провод, к которому все также подключены дома — это ни что иное, как общая (нулевая при симметричной нагрузке) точка соединения всех домов (приемников, потребителей). При этом отсутствующая связь этой точки с нейтралью трансформатора при симметричной нагрузке никак не сказывается на работу приемников (получение ими необходимого напряжения). А все по тому, что геометрическая сумма токов равна нулю, и все перераспределение энергии происходит между тремя фазами.
Казалось бы все просто, но как показывает практика, обычная трактовка основ электротехники все равно непонятна многим. Поэтому пойдем дальше и постараемся объяснить особенности функционирования трехфазной электрической цепи более подробно и нестандартно. Используем все тот же пример, но трансформируем схему в более простую модель. К каждой фазе у нас подключено по три дома. Сопротивление нагрузки каждого дома мы приняли равным 15 Ом (симметричная нагрузка). Воспользовавшись правилом параллельного соединения сложим сопротивления трех домов для получения общего сопротивления. Если в цепи используются резисторы одного номинала, то формула общего сопротивления имеет вид R = R1 / N (R1 – номинальное сопротивление резистора; N – количество резисторов с одинаковым номинальным сопротивлением). Получаем R = 15/3 = 5 Ом. То есть теперь три дома (резистора) на фазе можно заменить одним резистором с сопротивлением 5 Ом:
Мы упростили схему и показали, что при симметричной нагрузке по трем фазам можно без последствий отказаться от нейтрального провода, соединяющего две нулевые точки. Но даже в таком представлении схема будет не совсем понятна многим. Поэтому без внесения изменений перерисуем схему еще раз:
Для простоты одинаковые участки на двух схемах дополнительно промаркированы (0 — нулевые точки соединения обмоток трансформатора и приемников, N — нейтральный провод, соединяющий две нулевые точки). Может возникнуть вопрос, почему это — нулевые точки? Потому что при симметричной нагрузке в этих точках нет напряжения (потенциал равен нулю). На последней схеме дополнительно показана разность потенциалов между нулевыми точками UN = 0,01 nV ≈ 0 V. Следующий вопрос, а скорее заблуждение, что нулевой потенциал — это следствие заземления нейтрали. Это не так, и в следующих схемах мы объясним все через потенциалы:
Несмотря на то, что трехфазный генератор был заменен тремя источниками переменного напряжения, схема осталась прежней. Данная замена сделана для наглядности, чтобы можно было показать как начала обмоток (A, B, C), так и концы (X, Y, Z), соединенные звездой в общей точке (нейтрали). К началам обмоток (выводам трансформатора) подключен осциллограф и показаны синусоиды трех фаз, смещенных друг относительно друга на 120°. Синусоиды показывают амплитудное значение напряжения +325 и -325 Вольт на пиках. Простыми словами это значит, что с учетом частоты 50 Гц каждую секунду на выводе каждой фазы напряжение меняется от 0 до 325 до 0 до -325 до 0 Вольт. Такое изменение в совокупности дает привычные нам действующие 230 Вольт (325/√2), но далее мы будем рассматривать только амплитудное значение напряжения.
Вернемся к синусоидам трех фаз и рассмотрим напряжения в отмеченный момент времени, когда напряжение на пике фазы А (желтый график) +325 Вольт. В этот же момент на выводах оставшихся двух фаз (B, C) напряжение в сумме дает -325 Вольт (В ≈ -162,5 Вольт, C ≈ -162,5 Вольт). Все эти значения просчитаны как разность потенциалов начал и концов обмоток генератора (трансформатора) и показаны на осциллографе. Останемся в том же моменте времени, но перейдем от напряжений на осциллографе к конкретным потенциалам:
Теперь обратим внимание на такой параметр как напряжение. Напряжение показывает, какую работу совершает электрическое поле по перемещению единицы заряда на данном участке цепи. Для того чтобы образовалось электрическое поле в цепи должна быть разность потенциалов, и она в нашем примере есть. Разность потенциалов позволяет носителям электрического заряда (электронам) перемещаться из области с большим потенциалом в область с меньшим потенциалом (ток).
С учетом вышеперечисленного проанализируем схему. Начнем с правой части — начал обмоток (A, B, C). Без углубления в вектора, сложные формулы и комплексные числа попробуем понять путь протекания тока. На выводе A мы имеем потенциал +162,5 Вольт. Количественно это значит, что в данной точке находится избыток носителей электрического заряда. На выводах B и С имеется недостаток зарядов по -81,25 Вольт, что суммарно дает -162,6 Вольт. Получается разность потенциалов, в результате которой заряды от вывода A направляются к общей точке соединения приемников, далее перераспределяются и направляются к выводам B и С. При этом скорость перемещения зарядов на всем пути будет одинакова, но сила тока на трех фазах будет разной. Это обусловлено разным напряжением при одинаковом сопротивлении (симметрии потребления). Постараемся объяснить это простыми словами:
- Определенное количество зарядов (x) со скоростью (v) проходит по фазному проводу А, проходит нагрузку R = 5 Ом и попадает в точку соединение трех симметричных нагрузок (приемников).
- Из общей точки заряды разделяются пополам (x/2) и с той же скоростью (v) проходят нагрузки R = 5 Ом на фазах B и С, далее следуют к выводам этих фаз.
Такая конфигурация с симметричным источником и приемником позволяет всем зарядам от вывода фазы A сбалансированно перераспределится через оставшиеся две фазы B и C. Другими словами в точке соединения трех приемников никогда не бывает избытка или недостатка зарядов, что свидетельствует о нулевом потенциале этой точки. По такому же принципу заряды перераспределяются в левой части схемы, где соединены концы обмоток (X, Y, Z).
Подведем итог. При симметричном трехфазном источнике и симметричных приемниках потребность в четвертом нейтральном проводе отпадает. Достигается это за счет за счет ЭДС, сдвинутых по фазе одна от другой на угол 120°, которые перераспределяют заряды по трем одинаковым путям с одинаковой скоростью. Такая аналогия с путями и скоростью очень важна, и об этом вы узнаете в следующем пункте, описывающем значение нейтрального провода.
Значение нейтрального провода в трехфазной системе
При несимметричной нагрузке и отсутствии нейтрального провода фазные
напряжения приемника уже не связаны жестко с фазными напряжениями
генератора, так как на нагрузку воздействуют только линейные напряжения
генератора. Несимметричная нагрузка в таких условиях вызывает несимметрию ее фазных напряжений (UA, UB, UC) и смещение ее нейтральной точки (0) из центра треугольника напряжений (смещение нейтрали).
Естественно треугольник напряжений (векторы фазных напряжений) и сложные формулы расчетов мы рассматривать не будем. Постараемся, как и в предыдущих пунктах, разобраться с вопросом наглядно и упрощенно:
В приведенной выше схеме наблюдается несимметрия потребления. Фаза A нагружена больше и имеет сопротивление 5 Ом. Фаза B нагружена меньше и имеет сопротивление 10 Ом. Фаза C нагружена еще меньше и имеет сопротивление 15 Ом. С учетом этого произошла несимметрии фазных напряжений (UA ≈ 157 Вольт, UB ≈ 261 Вольт, UC ≈ 287 Вольт). Смещение нейтральной точки соединения приемников (0) привело к появлению разности потенциалов с нейтралью трансформатора UN = 75 Вольт.
Важно — в данной схеме нет нейтрального провода (измеряется всего лишь разность потенциалов).
Перейдем к потенциалам на выводах генератора (трансформатора). Они остались такими же, как и при симметричной нагрузке приемников. В конце предыдущего пункта мы отметили важность сбалансированности и одинаковой скорости движения электронов в цепи (для справки: ток у нас не постоянный, потому движение условное, и фактически — это «топтание на месте»). Как же происходит движение зарядов в данном случае, когда изменились параметры «путепроводов» (различное сопротивление на участках цепи):
- Определенное количество зарядов (x) со скоростью (v) проходит по фазному проводу А, проходит нагрузку R = 5 Ом и попадает в точку соединение трех несимметричных нагрузок (приемников).
- Из общей точки заряды уже не разделяются пополам. Виной тому увеличение сопротивления на пути от нейтральной точки приемников к выводам фаз B и C на трансформаторе. Баланс нарушился, и теперь то количество зарядов, пришедших от вывода A попросту не успевают перераспределится в цепи. Образуется избыток в данный момент времени зарядов в точке соединения нагрузок (0). Раз есть избыток (или недостаток в определенный момент периода синусоиды) в этой нулевой точке, то есть и разность потенциалов с нейтралью трансформатора (что и показал вольтметр UN).
Так как в нейтральной точке имеется потенциал, отличный от нуля, то это приводит к несимметрии фазных напряжений. К примеру, если бы потенциал в нейтральной точке был равен 0 Вольт (случай симметричной нагрузки), то фазное напряжение UA можно было бы рассчитать, как +162,5-(-162,5)-0 = 325 Вольт (амплитудное значение). 325/√2 ≈ 230 Вольт (действующее значение). В случае с несимметричным потреблением в нейтральной точке будет всегда какой-то потенциал. Соответственно при расчетах мы получим иное амплитудное и действующее значение напряжения. Из примера просчитанного в программе видно, что действующее напряжение UA ≈ 157 Вольт. Соответственно амплитудное равно 157×√2 ≈ 222 Вольт. Это можно наглядно увидеть на графиках синусоид, приведенных выше. Берем пик синусоиды фазы A с напряжением (потенциалом) +325 Вольт, и от этого потенциала отнимаем потенциал нейтрали (канал D) +103 Вольт в данный момент времени. То же самое можно сделать с остальными фазами. Берем пик синусоиды фазы B с напряжением (потенциалом) +325 Вольт, и от этого потенциала отнимаем потенциал нейтрали (канал D) -36 Вольт в данный момент времени. Получаем +325-(-36) = +361 Вольт (амплитудное значение). 355×√2 ≈ 255 Вольт (действующее значение). Приблизительно это и показывает вольтметр UB ≈ 261 Вольт.
Для того чтобы выравнивать фазные напряжения приемника при несимметричной нагрузке, нужен нейтральный провод соединяющий нулевые точки трансформатора (генератора) и приемников:
При наличии нейтрального провода в общей точке соединения нагрузок уже не может образовываться излишек или недостаток зарядов (потенциал), так как он сразу же будет перенаправляется в общую точку соединения концов фазных обмоток трансформатора (генератора).
Завершая тему трех фаз с нулем и без нуля стоит также отметить, что наличие нейтрального провода в цепи при несимметричной нагрузке, также позволяет подключать однофазные приемники с номинальным напряжением в √3 раз меньше номинального линейного напряжения трехфазной сети (230/400 Вольт).
Обрыв нуля в трехфазной и однофазной сети
Иногда обывателям приходится слышать эти страшные слова – “Обрыв нуля”. Для простого человека понятного мало, но связано это всегда с очень неприятными последствиями – поражение электрическим током, сгоревшая техника, и даже пожар в квартире. В этой статье я подробно рассмотрю, что такое обрыв нуля, как он происходит, какие последствия от него могут быть. И конечно, будет рассмотрена защита от обрыва нуля в трехфазной и однофазной сети. Для тех, кто не очень понимает, чем трехфазная сеть отличается от однофазной, очень рекомендую ознакомиться с этой статьёй. Также, при изучении этой статьи важно знать о том, как формируются системы заземления.
Где бывает обрыв нуля
Принципиально важно, что обрыв нуля может быть в трехфазной, а может быть в однофазной сетях. Там происходят совершенно разные процессы, подробно расскажу ниже. Если коротко, что при этом происходит: При обрыве нуля в трехфазной сети появляется перекос фаз, что может привести к тому, что напряжение в квартирной розетке возрастёт до 380 В! Для человека, если правильно выполнено заземление, такая авария не опасна. А вот для наших электроприборов – последствия могут быть очень печальными! А также и для нашего жилища, поскольку может произойти пожар. Местом обрыва нуля может быть этажный щиток, тогда в зоне риска находятся только квартиры на одной лестничной площадке. А может – вводное распределительное устройство (РУ) многоэтажного дома. Например, такое:
Вводное распределительное устройство (РУ) в подвале многоэтажного дома – в плохом состоянии
При обрыве нуля в однофазной сети последствия не такие печальные – напряжение в розетке будет нулевым, и электроприборы просто не будут работать. Однако вся электросеть (а при неправильно выполненном заземлении, и корпуса электроприборов!) будет находиться под потенциалом 220 В!
СамЭлектрик.ру в социальных сетях:
Подписывайтесь! Там тоже интересно!
Для начала, чтобы нагнать страха –
Последствия обрыва нуля в трехфазной сети
- Электрики ремонтировали ввод в подъезд. И во время ремонта на несколько секунд был отключен рабочий ноль. Произошло очень неприятное: вернувшись домой вечером, люди обнаружили, что у них погорели телевизоры, холодильники, зарядки, и т.п. – то, что у нас постоянно включено в розетки. Хорошо, что ещё не произошел пожар.
- Пришёл по вызову, жалоба – плавает напряжение. Меряю напряжение (всё выключено) – почти 300 вольт. Затем при включении лампы накаливания напряжение падает до 70В… Оказалось, в этажном щитке выгорел болт, на который приходит ноль. Произошел обрыв нуля, перекос фаз, напряжения пошли вразнос. Заменил болт, восстановил контакт, напряжение нормализовалось.
Болт нуля. Ржавый, периодически не контачит. Если его менять без отключения, 100% в подъезде погорит техника!
Отгорание нуля от нулевой шины
Нулевой провод отгорел от второго болта. Видно, как он отвалился под натяжением. Прежде, чем отвалиться, он ПОЧТИ переплавил изоляцию фазных проводов (вертикальные, красный и белый).
Сервер ещё не включали, возможно, интеллектуальный ущерб будет больше…
На месте этой трагедии я установил трехфазное реле напряжения Барьер, читайте статью по ссылке.
Как видно, такие проблемы происходят из-за неправильных действий “электриков” либо из-за самопроизвольного обрыва (отгорания) нулевого провода в старом жилом фонде.
В этой статье подробно расскажу, почему такое бывает и как с этим бороться.
Формирование однофазной и трехфазной сетей и обрыв нуля
Как известно, мощные потребители (в данном случае – многоквартирные дома) питаются от трехфазной сети, в которой есть три фазы и ноль. Про эту систему я уже писал подробно в статье про отличия трехфазного питания от однофазного, вот картинка оттуда:
Напряжения в трёхфазной системе
Рассмотрим этот вопрос ещё раз, только с другой стороны.
Вот как выглядит упрощенно схема подвода питания в этажный щиток:
Система питания, без обрыва нуля. Резисторами обозначены условно три квартиры.
Фазные провода L1, L2, L3, на которых присутствует напряжение 220В по отношению к нейтральному проводу N, обозначены красным цветом, поскольку они представляют опасность. Заземление РЕ показано внизу, его провод соединяется в распределительном устройстве на вводе в здание с нейтралью.
Подробнее – ещё раз призываю ознакомиться с моей статьёй про системы заземления, ссылка в начале.
К чему приводит отгорание нуля в трехфазной сети
Что изменится, если произойдёт обрыв нулевого провода N ДО места соединения нулевых проводов в одной точке? Будет обрыв нуля в трехфазной сети:
Обрыв нуля в трехфазной сети
Если смотреть по схеме, правее места обрыва напряжение теперь будет не нулевым, а “гулять” в произвольных пределах.
Что будет, если ноль отсоединить (случайно или намеренно)? Какие напряжения будут подаваться потребителям вместо 220В? Это как повезёт.
Картинка в другом виде, возможно, так будет легче понять:
Перекос фаз в результате обрыва нуля.
Потребители условно показаны в виде сопротивлений R1, R2, R3. Напряжения, указанные в предыдущем рисунке, как ~220B, обозначены как ~0…380B. Объясняю, почему.
Итак, что будет, если ноль пропадёт (крест в нижнем правом углу)? В идеальном случае, когда электрическое сопротивление всех потребителей одинаково, ничего вообще не изменится. То есть, перекоса фаз не будет. Так происходит в случае включения трехфазных потребителей, например, электродвигателей или мощных калориферов.
Но в реале так никогда не бывает. В одной квартире никого нет, и включен только телевизор в дежурном режиме и зарядка телефона. А соседи по площадке устроили стирку, включили сплит-систему и электрический чайник. И вот -БАХ!- отгорает ноль.
Начинается перекос фаз. А насколько он зверский, зависит от реальной ситуации.
У соседей, которые дома, чайник перестанет греть, стиралка и сплит потухнут, напряжение уменьшится до 50…100В. Поскольку “сопротивление” этих соседей гораздо ниже, чем тех у тех, которых нет дома. И вот, эти люди спокойно работают на работе, а в это время в пустой квартире у них дымятся телевизор и китайская зарядка. Потому, что напряжение в розетках подскочило до 300…350В.
Это реальные факты и цифры, такое иногда бывает, состояние электрических щитков на лестничных площадках часто бывает аварийным. Даже, когда в доме проводится капитальный ремонт, щитки не трогают, поскольку менять электрику гораздо сложнее, чем покрасить дом и вставить новые окна.
Расследовать такое возгорание надо не с вызова экстрасенсов (мало ли, полтергейст со спичками играется;) ), а с вызова электрика.
Обрыв нуля в однофазной сети
Тут картина будет следующей:
Обрыв нуля в однофазной сети
Для нагрузки, которая работает на других фазах, вообще ничего не изменится. Это всё равно, как если в своей квартире выключить вводные автоматы – соседям будет по барабану.
Но если обрыв произошел, например, в щитке, то вся квартира, в том числе и оборванный конец нулевого провода, окажется под напряжением 220В!
Обрыв (отгорание) бывает вот из-за таких ржавых болтов, как вверху этого фото:
Плохой ноль. Пропадание нуля в квартире
Повторюсь – если заземление сделано правильно, либо его вообще нет – эта авария ничем не опасна. Ну и, конечно, не нужно трогать провода, не дожидаясь электрика – все они под смертельным потенциалом!
Хорошо, кто виноват – мы поняли. Что делать?
Как защититься от обрыва нуля?
Самая лучшая защита от обрыва нуля в трехфазной сети – это реле напряжения, о котором я писал на блоге не раз. Вот две мои основные статьи – Про реле напряжения Барьер и реле напряжения ЕвроАвтоматика ФиФ.
Из-за своей основной функции это реле называют также Реле обрыва нуля.
Другой вариант – применение стабилизатора напряжения. В нем обязательно должна быть защита от пониженного и повышенного (до 380В) входного напряжения. А при невозможности стабилизировать напряжение он должен отключать квартиру, но оставаться исправным.
Лучший вариант для защиты от обрыва нуля и вообще при нестабильном напряжении – использовать реле напряжения, а вслед за ним – стабилизатор.
Видео
Подробно и наглядно про обрыв нуля, перекос фаз, и чем это опасно – в видео:
Как вариант дополнительной защиты при обрыве нуля может помочь УЗО (или диф.автомат). Только не так всё просто, подробности – в видео:
На сегодня всё, подключайтесь к обсуждению, задавайте вопросы в комментариях!
Рекомендую похожие статьи:
- Реле напряжения. Как и когда подключать?
- Подключение трехфазного стабилизатора напряжения
- Реле напряжения в трехфазной сети
- Чем трехфазное напряжение отличается от однофазного
- Реле напряжения ЕвроАвтоматика ФиФ – полный разбор
- Как подключить стабилизатор напряжения
- УЗО-ЭЛТА-2Д – мой отзыв о новинке
Три фазы без нуля как работает
При подключении частного дома к электросети часто приходится слышать вопрос от владельца о том, чем трехфазный ток отличается от однофазного. Прежде всего, различия касаются такого ряда параметров, как – номинал, мощность и равномерность распределения нагрузки. В этом обзоре расскажу, что такое 3-х- и 1-фазная сеть, чем они различаются, каковы их плюсы и минусы, когда лучше выбрать тот или иной вариант, а также как правильно выполнить подключение.
Подключение 3-фазной электросети к частному дому требует организации специального вводного щитка
Источник samelectrik.ru
Фазное и линейное напряжение – что это такое, чем различаются
Для начала выделю такой главный момент, что поступающая в дом с линии электропередач электроэнергия вырабатывается 3-х-полюсным энергогенератором. В упрощенной форме можно сказать, что взаимодействие статора с ротором, приводит к образованию на выходе каждого из 3-х модулей собственной разности потенциала.
Ввиду того, что их всего 3, каждый из них образует отдельный контакт, вырабатывающий ток. Однако электроток возникает из одного генератора, и каждый из 3-х сегментов занимает ровно 120° в окружности обмотки. Поэтому все 3 фазы вырабатываемого переменного электричества имеют сдвиг относительно друг друга ровно на 120 градусов.
В 1-фазной сети потенциал меняется от 0 до 220 вольт 50 раз в течение 1 секунды (графически это отображается синусоидой). Для маломощных бытовых приборов это некритично. Другое дело – большая мощность потребления. Тогда применяется 3-фазная цепь. В ней такой недостаток компенсируется всеми 3-мя фазами – то есть пока одна фаза затухает, тут же возрастает 2-ая, в то же время как 3-яя уже на пике.
Графическая схема смещения фаз друг относительно друга в 3-фазной сети переменного тока
Источник energetik.com.ru
Именно в этом и заключается главное отличие однофазного тока от трехфазного – при этом первое носит название фазного (220 В «фаза + ноль»), второе линейного напряжения (380 В «фаза + фаза»).
На заметку!
По заявке владельца сегодня к частному дому можно подключить 3 фазы. Нужно это не только для эксплуатации электрооборудования на 380 В. По факту получается 3 отдельные фазы на 220 вольт, к которым потом можно будет подключить все бытовые приборы для эффективного распределения нагрузки. Однако делать это нужно грамотно, чтобы не возникало перекоса фаз.
Плюсы и минусы
В принципе, в современных частных владениях используются как 1-фазные, так и 3-фазные схемы. В каждом случае есть свои особенности.
Так, в 1-фазных сетях я нашел следующие преимущества:
- Доступность. В большинстве случаев бытовые сети предоставляют напряжение 220 В.
- Безопасность. Угроза поражения исходит только от 1-го проводника, при этом его номинал не такой высокий, как в 3-фазном варианте.
- Упрощенный монтаж. При прокладке проводки и подключении оборудования не обязательно применять профессиональные приспособления – достаточно специального щупа.
Монтаж 1-фазной сети прост и доступен даже не профессионалу
Источник ob-otdelke.ru
Главный недостаток сводится к ограниченности мощности потребления. Как правило, 10 кВт – это уже предел для 1-фазных цепей. В отличие от сети на 220 вольт электроцепь на 360–380 вольт (или 3 фазы) позволяет подключать столько оборудования, сколько вообще может потребоваться на бытовом уровне. Естественно, с учетом ограничений входного устройства и сечения питающего кабеля.
Кроме того, выделю еще несколько положительных сторон 3-фазной схемы:
- Экономический фактор – для передачи электроэнергии требуется меньше проводов, что особенно актуально для ЛЭП длиной сотни и тысячи километров.
- Трансформаторы характеризуются минимальными размерами магнитопроводной части – по сравнению с аналогами для 1-фазной цепи.
- Для подключения приборов одинаковой мощности в 3-фазной сети требуется проводник с меньшим сечением, чем в 1-фазной.
- Возможность изготовления и функционирования 3-х-фазных асинхронных электродвигателей. Моторы проще, надежнее и мощнее моделей, требующих подключения 1-ой или 2-х фаз.
- При необходимости в цепи можно переключать номинал напряжения, изменять количество подключенных фаз и менять мощность оборудования.
3-х-фазная сеть позволяет равномерно распределять нагрузку по отдельным фазам
Источник u-energo.ru
- Для каждой люминесцентной лампы в пределах одного осветительного прибора можно подключить отдельную фазу. В результате это существенно понизит мерцание и избавит от стробоскопического явления.
- Равномерное распределение механической нагрузки в энергогенераторе, и увеличение срока его службы.
Недостатки проявляются в том, что для подключения придется приобретать более дорогостоящее электрооборудование. Кроме того, напряжение между любыми двумя фазами в цепи всегда равно 380 вольт, а это само по себе уже смертельно опасно – что при нечаянном контакте с неизолированными частями, что при пробое тока на корпус.
Мощность электрооборудования в 3-х-фазной сети по большому счету ограничена площадью сечения питающих проводников. Однако на бытовом уровне для частного потребителя существует предел, контролируемый договором и вводным щитком, например, 15 кВт.
Для подключения оборудования одинаковой мощности в 3-фазной сети требуется провод с меньшим сечением, чем в 1-фазной
Источник vseinstrumenti.ru
Правила выбора – что лучше 1 или 3 фазы
При выборе типа домашней сети – между 1-фазной и 3-х-фазной, рекомендую руководствоваться следующими принципами:
- Мощность потребления всего электрооборудования не превышает 10 кВт. Для питания достаточно одной фазы и нулевого провода. Подходит для вариантов, когда жилище имеет альтернативный тип обогрева (дрова, газ, уголь), и не применяется мощная техника.
- Потребительский предел выше 10 кВт. Потребуется 3-х-фазная система электроснабжения. Как правило, такие условия возникают при установке в доме электрокотла, наличии сопутствующего электрооборудования на участке, в гараже, мастерской.
- Наличие 3-х-фазных установок. Например, если планируется пользоваться мотором на три фазы, лучше сразу подключать дом к сети электричества с напряжением на 380 вольт – так как разница в КПД будет ощутимее и расходы ниже, чем при питании его в 1-фазной цепи, то есть на 220 В.
Видео о том, что такое 3-фазный переменный ток:
- В цепи большое количество 1-фазных потребителей с суммарной мощностью свыше 15 кВт. В таком случае нужно выбирать 3-фазное подключение с последующим равномерным распределением нагрузки по каждой фазе. В противном случае потребуются расходники с нереальными параметрами. Например, для нагрузки в 15000 ватт в 1-фазной цепи понадобится медный кабель сечением 10 мм² и автомат на 70 А.
Главный недостаток 3-фазной цепи с распределением нагрузки по отдельным фазам выражается в ограничении потребительской мощности. К примеру, если выделяется всего 15 кВт, значит, на каждую ветку пойдет по 5 кВт. Поэтому перед подключением нужно тщательно продумать схему распределения.
Варианты подключения
Контакты обмоток трансформатора или генератора в сетях с 3-фазного напряжения объединяются 2-мя способами:
- Звезда. Концы обмоток стыкуются в единую точку.
- Треугольник. Соединение обмоток выполняется таким образом, чтобы конец 1-ой стыковался с началом 2-ой, а конец 2-ой с началом 3-ей, и конец 3-ей с началом 1-ой.
Видео о том, что лучше для дома 1 или 3 фазы:
При этом подключить потребителя к сети можно по следующим вариантам схем:
- Звезда-звезда – с применением нейтрального проводника.
- Звезда-звезда – без нулевого провода.
- Звезда-треугольник.
- Треугольник-звезда.
- Треугольник-треугольник.
Наличие такого разнообразия вариантов подключения в системе трехфазного переменного тока обуславливается тем, что как источник, так и потребитель можно подключать звездой или треугольником. При этом в каждом случае будет возникать свои линейные и фазные соответствия.
Особенности подключения двигателя
Если вы хотите подключить 3-х-фазный электродвигатель асинхронного типа, и при этом получить максимальный КПД, советую соединять контакты его обмотки по схеме «треугольник». При этом надо учесть, что в таком случае включение мотора в качестве нагрузки будет иметь следующие особенности:
- Потребляемая мощность возрастает в 1,5 раза.
- Ввиду усилия, требуемого для раскрутки, сила пускового тока повышается в 6-7 раз по сравнению с рабочим значением.
- При внезапном возрастании сопротивления вращающегося вала происходит резкий скачок силы тока.
Видео-обзор о том, как выполняется подключение «звезда» и «треугольник» на примере асинхронного двигателя:
Всего этого можно избежать, если подключить электропривод по схеме «звезды». Ценой некоторого понижения КПД удастся исключить риск перегрева и рывок при запуске, обеспечив плавное нарастание оборотов до рабочего уровня. Благодаря этому оборудование будет работать хотя и слабее, но надежнее и дольше без риска поломки.
Обратите внимание!
В зависимости от схемы подключения обмоток различаются 2 вида электротока – фазное и линейное. Так, когда ток трехфазной цепи на 380 В циркулирует по обмотке потребителя или генератора, речь идет о межфазном или фазном напряжении. Когда же передача идет через проводник от источника к нагрузке, говорят о линейной разновидности.
Видео-советы по тому, что лучше для дома – 1 или 3 фазы:
Коротко о главном
Трехфазный переменный электрический ток вырабатывается энергогенератором, обмоточный контур которого равномерно разделен на 3 сектора. Из-за этого все 3 фазы смещены относительно друг друга на 120 градусов. На практике это дает возможность взаимной компенсации перепадов, и, как результат, более стабильные общие характеристики.
Потенциал между фазой и нейтралью равен 220 В и называется фазным напряжением, а между фазами – линейным и соответствует 380 В. 1-фазные сети более доступны и просты в эксплуатации, однако весьма ограничены по мощности. 3-фазные цепи, напротив, не ограничены по мощности потребления, позволяют экономить на проводниках и трансформаторах, а также дают возможность более оптимально подключать и эксплуатировать оборудование. Минусы – более дорогостоящее оборудование и опасность.
При выборе подключения домашней сети между 1 и 3 фазами нужно учесть ряд аспектов:
- При мощности оборудования ниже 10 кВт достаточно 1 фазы.
- Если потребительская мощность выше 10 кВт, лучше использовать 3 фазы.
- 3-х-фазные установки для оптимизации работы лучше подключать на 380 В, а не на 220 В.
- При наличии в цепи большого числа 1-фазных приборов с суммой мощности от 15 кВт лучше использовать 3 фазы с равномерным распределением по фазам.
Трехфазное электричество можно подключать 2 способами – «звезда» и «треугольник». Правило касается как потребителя, так и источника. При выборе схемы для асинхронного мотора нужно учесть особенности запуска, возрастание мощности и возможный рост силы тока при перегрузках.
Напишите в комментариях, используете ли в своем домашнем хозяйстве 3-х-фазную электросеть, или она вам не нужна?
Как течет ток в системе с изолированной нейтралью в трехфазной сети?
Рядовые потребители электрической энергии редко понимают, что источником тока в розетке являются силовые трансформаторы. При соединении трёхфазных обмоток трансформатора в «звезду» появляется совместная точка. Нейтраль – так она называется. При соединении нейтрали с контуром заземления непосредственно у источника появляется глухозаземленная нейтраль.
Наибольшая область применения систем с глухозаземленной нейтралью – напряжение до 1000 Вольт (так называемое низкое напряжение). Электрические сети городов и посёлков, дачные домики и элитные коттеджи – все они запитываются от силовых трансформаторов с заземлѐнной нейтралью.
Особенности конструктива
Конструктивной особенностью глухозаземленной нейтрали является наличие фазного и линейного напряжения. Источники электрической энергии, используемые в рассматриваемых электроустановках, обладают тремя силовыми: фазными концами и одним нейтральным – нулевым. Разность потенциалов, появляющаяся между фазными проводами, называется линейным напряжением, а между одним из фазных и нулевым – фазным.
По величине показателя линейного напряжения говорят о напряжении всей электросети. В нашей стране оно зафиксировано на значениях, равных 220В, 380В и 660В.
√3 раз – такова разница между фазным и линейным напряжением. Соответственно, фазное напряжение будет принимать вид 127 В, 220 В и 380 В. Самое распространённая величина номинального напряжения – 380 В. При линейном напряжении 380 В фазное равно 220 В.
Электрическую сеть с нейтралью, заземлённой непосредственно рядом с источником, можно использовать для электроснабжения трехфазных нагрузок на напряжение 380 В и однофазных на напряжение 220 В. Для последних подключение производится между «фазой» и «нулём». Распределение однофазных потребителей производят равномерно по фазам А, В и С во избежание перекоса.
Контур заземления ТП
Любая трансформаторная подстанция с действующим трансформатором обязана быть окружена контуром заземления. Контур заземления трансформаторной подстанции – это таким образом соединённые между собой металлические заземлители, заглублённые в грунт, чтобы сопротивление их не превышало 4-х Ом при номинальном напряжении 380 В. Это значение закреплено в главном нормативном документе электротехники – ПУЭ.
От контура заземления подстанции делаются выводы для присоединения в распределительном устройстве к специальной металлической полосе – нулевой шине. К ней же подключается нулевой вывод трансформатора. У отходящих кабельных линий соответствующие жилы так же заводятся на эту шину. Фазные жилы «сажаются» на коммутационные аппараты.
Кабели, выходящие из кабельного полуэтажа подстанции, должны быть четырёхжильными. В давно введённых в эксплуатацию электроустановках встречаются кабели с тремя жилами и оболочкой из алюминия. В этом случае она используется как нулевой проводник.
Для принятия напряжения от сетевой организации каждый потребитель обязан организовать у себя на объекте вводное распределительное устройство 0,4 кВ (ВРУ). В нем необходимо предусмотреть нулевую шину соответствующего сечения. К ней присоединяются все нулевые жилы подходящих и отходящих кабелей. Повторное заземление ВРУ тоже заводится на нулевую шину.
Что такое заземление и нейтральный провод
Функция нейтрального проводника N – баланс потенциалов нескольких фаз и обеспечение потребителей током. Нулевой провод соединяется с глухозаземленной нейтралью трансформатора. В частных домах используется однофазный тип подключения с помощью нулевого и фазного кабеля. Для соединения нуля и земли используется заземляющий контур. Сама нейтраль маркируется изоляцией голубого цвета.
Проводник заземления обеспечивает безопасность электролинии при поломке. Его нормальный режим работы – проводной, при критических сбоях потенциал тока отводится в почву. Кабель РЕ маркируется при помощи сине-желтого цвета.
Схема подключения нейтрального провода и заземления
В МЭК-364, ГОСТе 30331.1-95 приводятся схемы подключения сети, нагрузка которой равняется 380 Вольт. По этой причине в квартире рекомендуется применять одну из систем.
Отдельная линия заземления TN-CS. Нейтральный щитки и защитные проводники домашнего коммутатора соединяются друг с другом. При наличии двух проводов PEN-кабель в определенной точке разделяется на нейтраль и защиту. Провода PE подкидываются к проводникам N. Защита схемы зависит от точки обрыва:
- До места разделения. Фазный проводник и устройство зашиты отводят напряжение в нейтраль, а от нее – на провод защиты.
- После места разделения. Опасное электричество не передается на корпус бытовой техники, а сразу передается на провод защиты.
Отдельный заземляющий контур TN-S. Заземление сети осуществляется на месте нейтральной трансформаторной точки, откуда проводка выводится на устройства. Трехфазная квартирная сеть с полностью изолированной проводом-нейтралью является максимально защищенной от сбоев. Нулевой проводник, поврежденный на любом участке, не взаимодействует с защитным, поэтому не имеет рисков для человеческого здоровья. Единственная проблема – временное отключение техники.
Требования ПУЭ
В Правилах нормам и требованиям к глухозаземленной посвящена глава 1.7, приведем наиболее значимые выдержки из нее:
- Для подключения нейтрали к контуру заземления необходимо использовать специальный проводник.
- При выборе места под заземляющее устройство следует исходить из минимально допустимого расстояния между ним и нейтралью.
- Если в качестве заземления используется жб конструкция фундамента, то к его армирующему основанию следует подключаться не менее чем в 2-х точках, это гарантирует наиболее эффективную защиту.
- Сопротивление заземляющего проводника для трехфазной цепи электрической сети 0,4 кВ имеет ограничение 4-е Ома. В исключительных случаях эта норма может быть пересмотрена исходя из характеристик грунта.
- В линии глухозаземленной нейтрали запрещено устанавливать предохранители, защитные устройства и другие элементы, способные нарушить целостность проводника.
- Правилами предписывается обеспечить заземляющему проводнику надежную защиту от механических повреждений.
- ВЛ должна быть оборудована дублирующими заземлителями, они устанавливаются в начале и конце линии, на отводах, а также через каждые 200 м.
- Дублирующее заземление должно выполняться и на вводе потребителя и обязательно указываться в схеме щитка ВРУ.
- При организации бытовых однофазных сетей от ВРУ должна выполняться разводка тремя проводами, один из которых фаза, второй – ноль (N) и третий – защитный (РЕ).
- Скорость срабатывания защитных автоматов, установленных в однофазных сетях с глухозаземленной нейтралью, не должна быть продолжительней 0,40 сек.
Эффективно-заземлённая нейтраль | Электротехнический журнал
Эффективно-заземлённая нейтраль (трех-фазной электроустановки) — нейтраль трёхфазной электрической сети выше 1000В (1 кВ и выше), коэффициент замыкания на землю в которой не более Кзам = 1,4.
Термин «глухозаземлённая нейтраль» в сетях выше 1000В в данный момент не применяется. Электроустановки, в которых нейтраль соединяется с заземляющим устройством непосредственно, также относятся к электроустановкам с эффективно-заземлённой нейтралью.
Коэффициент замыкания на землю в трехфазной электрической сети — это отношение разности потенциалов между неповреждённой фазой и землёй в точке замыкания на землю другой или двух других фаз к разности потенциалов между фазой и землёй в этой точке до замыкания.
Популярные статьи Как работают устройства автоматики повторного включения (апв)?
Иначе говоря при замыкании фазы в сети с изолированной нейтралью напряжение между землёй и неповреждёнными фазами возрастает до линейного — примерно в 1,73 раза; в сети с эффективно заземлённой нейтралью напряжение на неповреждённых фазах относительно земли возрастёт не более чем в 1,4 раза
Это особенно важно для сетей высокого напряжения, что уменьшает количество изоляции при изготовлении сетей и аппаратов, удешевляя их производство. Согласно рекомендации МЭК к сетям с эффективно-заземлённой нейтралью относят сети высокого и сверхвысокого напряжения, нейтрали которых соединены с землёй непосредственно или через небольшое активное сопротивление
В СССР и России сети с эффективно-заземлённой нейтралью — это сети напряжением 110 кВ и выше.
Недостатки
- Возникновение больших токов короткого замыкания (ТКЗ) через заземлённые нейтрали трансформаторов при замыкании одной фазы на землю, что должно быть быстро устранено отключением от устройств релейной защиты. Большинство коротких замыканий на землю в сетях 110 кВ и выше относятся к самоустранимым и электроснабжение обычно восстанавливается АПВ.
- Удорожание сооружения контура заземления, способного отводить большие токи к.з.
- Значительный ток однофазного к.з., при большом количестве заземлённых нейтралей трансформаторов может превышать значение трёхфазного тока к.з. Для устранения этого вводят режим частично разземлённых нейтралей трансформаторов (часть трансформаторов 110-220 кВ работают с изолированной нейтралью: нулевые выводы трансформаторов присоединяются через разъединители, которые находятся в отключённом состоянии). Ещё одним из способов ограничения тока к.з. на землю-это заземление нейтралей трансформаторов через активные токоограничивающие сопротивления.
Особенности выполнения эффективно заземлённой нейтрали
Согласно ПТЭЭП максимально допустимая величина сопротивления заземляющего устройства для сетей с эффективно заземлённой нейтралью (для электроустановок выше 1000 В и с большим током замыкания на землю — свыше 500 А — каждого объекта) составляет 0,5 Ом с учётом естественного заземления (при сопротивлении искусственного заземляющего устройства — не более 1 Ом). Это вызвано необходимостью пропускания значительных токов при к.з. на землю, высоким и сверхвысоким напряжением сети, требованием ограничения напряжения между землёй и неповреждёнными фазами, а также возможностью появления при авариях высоких напряжений прикосновения, шаговых напряжений и опасных «выносов потенциалов» за территорию подстанции. Необходимость равномерности распределения потенциалов внутри подстанции и исключения появления шаговых напряжений на значительном удалении от подстанции исключается т.н. устройством выравнивания потенциалов, которое является составной частью заземляющего устройства для эффективно заземлённых нейтралей. Особые требования для заземляющих устройств с эффективно заземлёнными нейтралями создаёт значительные трудности для их расчёта и сооружения, делает их материалоёмкими, особенно для грунтов с высоким удельным сопротивлением (каменистые, скальные, песчаные грунты) и стеснёнными условиями сооружения.
Примечания
- ПУЭ — правила устройства электроустановок, издание 6-е и 7-е.
- ПТЭЭП — правила технической эксплуатации электроустановок потребителей.
Просмотров всего: 135, Просмотров за день: 1
- Эффективно заземленная нейтраль и глухозаземленная отличия
- Испытания кабеля из сшитого полиэтилена 10 кв
- Испытания кабеля из сшитого полиэтилена 10 кв
- Плюсы и минусы тэц
- Плюсы и минусы тэц
- Разъединитель шинный 10 кв
- Разъединитель шинный 10 кв
- Разъединитель рндз
- Разъединитель рндз
- Протокол испытания кабеля сшитого полиэтилена
- Протокол испытания кабеля сшитого полиэтилена
Что происходит в электросети при обрыве нуля?
Рассмотрим отдельно, изменение режима работы трехфазной сети при обрыве магистрального нуля и как поведет себя однофазная электрическая проводка, если отгорание нулевого проводника произойдет на вводе.
Отгорание нуля в трехфазной сети
Внесем изменения в рисунок 1, вызванные аварией, а именно отключением нуля .
Оборвался нулевой магистральный проводник
В данном случае обрыв общего нулевого провода приведет к тому, что движение электрического тока по нему прекратиться. В результате все квартиры R1-R3 будут запитаны по типу подключения «звезда без нулевой магистрали». Другими словами, при обрыве нуля на каждую квартиру будет поступать не фазное, а линейное напряжение.
Контур из квартир 1 и 2
Для примера предлагаем рассмотреть, как сложится ситуация в квартирах 1 и 2. Нагрузка электрических приборов суммируется в данном контуре при прохождении через него тока I12. Соответственно, уровень напряжения для квартир установится в зависимости от нагрузки подключенных к сети приборов. То есть: U1 = I12*R1, а U2 = I12* R2. Из этого следует, что суммарная величина силы тока составит I12 = U12 / (R1+R2) :
Обратим внимание, что суммарное напряжение контура будет равно линейному в данной электросети, то есть U12 = 380 вольт. Но при этом показатели U1 и U2 могут варьироваться в диапазоне 0-380 вольт и, естественно, существенно отличаться друг от друга
На данные значения может влиять как нагрузка подключенных приборов в каждой из квартир, так и ее активная и пассивная составляющая.
В результате если произойдут проблемы с нейтралью трансформатора (нулем источника), велика вероятность выхода из строя подключенных к сети приборов. Причина – повышение уровня напряжения в сети.
Обрыв нуля в однофазной сети
В данной ситуации последствия будут не такими печальными, как в описанном выше случае, но, тем не менее, если отгорает вводный ноль в системе TN-C, это может представлять серьезную опасность для жизни человека.
Отгорание нуля в схеме однофазного потребителя
Для однофазных нагрузок обрыв нуля будет аналогичен отключению напряжения, за исключением того фактора, что на фазном проводе останется потенциал, представляющий опасность для жизни. Причем, он также проявится там, где был ранее защитный ноль в контактах розеток. Если корпуса электроприборов заземлялись рабочим нулем, то весьма велика вероятность негативных последствий. В системах TN-C-S фактор риска существенно сокращается, за счет использования PEN проводника.
Система заземления IT или система заземления с изолированной нейтралью.
Обычно эта система описывается примерно так:
Классическая система, основным признаком которой является изолированная нейтраль источника – «I», а также наличие на стороне потребителя контура защитного заземления – «Т». Напряжение от источника к потребителю передается по минимально возможному количеству проводов, а все токопроводящие детали корпусов оборудования потребителя должны быть надежно подключены к заземлителю. Нулевой функциональный проводник N на участке источник – потребитель в архитектуре системы IT отсутствует.
На этом всё описание системы IT обычно и ограничивается и совершенно не понятно как этим всем практически пользоваться? Как подключать потребителей, как подключать системы автоматизации?
На эти вопросы я и постараюсь ответить.
Во-первых, где можно встретиться с этой системой?
Она широко используется на судах и всём, что считается судами, на морских нефтяных и газовых платформах, например
Не важно, что платформа стоит на дне моря, с точки зрения морского регистра она – судно
Последствия КЗ и способы их предотвращения
Короткое замыкание характеризуется протеканием повышенных значений тока. В свою очередь большой ток опасен для кабелей, соединений. Это характерно лавинообразным развитием последствий замыкания. Кабеля отгорают от соединений, сами соединения нагреваются, после чего происходит их ускоренное разрушение. Нагрев может повлечь возгорание электропроводки и пожар.
Для предотвращения последствий межфазного замыкания в цепях 220/380 используются плавкие вставки, предохранители, автоматические выключатели. Предохранители, когда через них протекает ток выше номинального, перегорают, тем самым разрывая цепь. После замены предохранителя, если вы не устранили межфазное замыкание, он будет перегорать вновь и вновь.
Для улучшения условий работы и эксплуатации, устранения необходимости замены плавких элементов используются автоматические выключатели. Они реагируют как на незначительное повышение тока сверх нормы (тепловой расцепитель), так и на резкое сильное повышение (электромагнитный расцепитель). При междуфазном замыкании или между фазой и землей автоматический выключатель разъединится. В таких случаях говорят «выбил автомат». Для возобновления подачи напряжения необходимо заново взвести рычаг автомата или перевключить кнопку (на АП-шках).
Популярные статьи Бифилярная катушка и ее использование
На видео наглядно показывается опасность межфазного короткого замыкания (под удар попал манекен, это были показательные выступления):
Различия фазного и нулевого провода
Фазный провод (фаза) предназначен для подачи электричества к потребителю.
Назначение нулевого провода (нейтрального или нуля) состоит в выравнивании асимметрии напряжений при разном значении нагрузки в фазах.
Он присоединён к нулевым точкам источника и потребителя при их соединении в «звезду».
Присоединение нейтрального провода (трехфазная четырехпроводная сеть) является возможным только в том случае, когда источник и нагрузка соединены в «звезду».
При соединении в «треугольник» необходимость в нём отпадает, так как линейное и фазное напряжения в фазах одинаковы.
Чтобы понять разницу между линейным и фазным напряжением, необходимо понимать, что в трехфазной трехпроводной цепи линейное (напряжение между двумя фазными проводами) в основном составляет 380 В, а фазное — напряжение между фазой и нулем — в √3 раз меньше приблизительно 220 В.
Нейтральный провод заслужил свое название тем, что при работе устройств ток в нём, при одинаковой нагрузке трёх фаз, равен нулю. Сопротивление его невелико. Поэтому при перегрузке одной или нескольких фаз, ток в нем быстро возрастет. В схеме освещения его наличие является обязательным условием. В ином случае не гарантируется равномерность освещения.
В зависимости от роли, нулевой провод может быть рабочим, защитным, совмещенным.
Защитный обозначается РЕ. Он предназначен для безопасности в случае попадания потенциала на корпус электроприбора. В нормальном режиме он обесточен, а при поломке является проводником, который отведет от электроприбора опасный потенциал в землю. Цвет этой жилы желто-зеленый.
В некоторых системах нулевой провод совмещен с защитным. В таком случае маркировка будет обозначена как PEN и окраска этой жилы будет синей с полосками на концах желто-зеленого цвета.
Особенности нулевого провода трехфазной сети
В промышленности электросеть может собираться по схеме “треугольник” или “звезда”. Для нужд населения используется сеть по схеме “звезда” с нулевым проводником. Как известно три фазы трехфазной сети сдвинуты относительно друг друга на 120. В нулевом проводнике токи, сдвинутые на 120, взаимно компенсируются.
Схема соединений нагрузок звезда
При одинаковой нагрузке в каждой фазе, общий ток нулевого провода будет равен нулю. Это в идеале. В действительности нагрузка каждой фазы разные, ведь все потребители нагрузок в многоквартирном доме включаются не согласовано, в разное время и разной мощностью.
Поэтому токи в трехфазной сети в нулевом проводе будут отличаться от нуля. Но всё равно для сети 50 Гц ток в нулевом проводе будет ниже, чем токи в фазных проводах. Поэтому для трехфазных сетей 50 Гц сечение нулевого провода берется в 2 раза ниже фазного. Такие особенности сети можно отнести к прошедшим годам.
Перекос фаз в трехфазной сети, ток нулевого провода не равен нулю
Что же изменилось в современной электросети? С появлением техники на импульсных источниках питания, в сети кроме частоты 50 Гц стали присутствовать и высшие гармоники. Если раньше к сети подключалась только линейная нагрузка (тэны, двигатели, лампы накаливания), то сейчас еще добавились и нелинейные нагрузки с импульсным характером питания.
Все импульсные источники имеют диодные мосты с конденсаторами, которые периодически меняют свое сопротивление (включаясь и отключаясь), с частотой импульсного генератора. Таким образом, при работе импульсного источника появляются короткие импульсы в сети. Присутствие этих коротких импульсов вызывает ряд негативных последствий.
Как распространяется ток в электрической цепи
Начнем разбирать данный вопрос с анализа утверждения, что ток течет по пути наименьшего сопротивления. Это не верно, так как в замкнутой цепи он (а точнее — свободные электроны) распределяется везде, только его сила обратно пропорциональна сопротивлению (если речь идет о ). Другое дело, когда на определенном участке нет вообще сопротивления, тогда весь ток пойдет через него. Это можно показать на схеме, но в реальности на воздушных линиях с большой протяженностью такое невозможно. Для наглядности рассмотрим подключение нагрузки к источнику однофазного тока:
К источнику питания подключена нагрузка (условно чайник) создающий сопротивление 30 Ом. Цепь замкнулась, и в ней образовался ток 7,3 Ампер. Прикоснувшись к нулевому проводу и стоя на земле, мы создали дополнительную цепь через тело, землю и заземлитель к источнику питания. На данном этапе уместно вспомнить землю с ее нулевым потенциалом. В данном случае она выступает просто как проводник, соединенный с нулевым выводом источника питания. Поэтому можно перестроить схему, заменив землю обычным проводником:
Как в первой, так и во второй схеме через участок человек — заземление — источник питания не проходит ток. Не удивительно, ведь на пути два резистора с сопротивлением 4 и 1000 Ом. Так почему же неверна трактовка движения по пути наименьшего сопротивления. Весь секрет кроется в проводах, которые имеют свое сопротивление. Электрическое сопротивление жилы самонесущего изолированного провода (СИП) сечением 25 мм² равно 1,380 Ом/км. К примеру, возьмем длину 250 метров. Тогда сопротивление провода в конце линии будет приблизительно 0,345 Ом. Добавим это сопротивление в нашу схему:
Теперь ток 2,5 мА пошел через человека. Произошло пропорциональное перераспределение тока в цепи. И земля здесь никак не спасает, а наоборот усугубляет. Ведь если бы не был заземлен вывод источника однофазного тока, то никакой разности потенциалов с землей и не было бы.
Для того чтобы понять, почему в цепи человек-земля (проводник)-заземлитель-источник питания появился ток и рассчитать его величину, нужно воспользоваться правилами последовательного, параллельного и смешанного соединения резисторов. Мы этого не будем делать, так как программа Electronics Workbench все посчитала за нас. Лучше простыми словами пройдемся по схеме и разберемся с потенциалами:
Оранжевый участок от источника питания до нагрузки имеет потенциал 217,5 Вольт. Это значение равно напряжению на входе в резистор с сопротивлением 30 Ом. Участок цепи, отмеченный желтым имеет потенциал 2,5 Вольта, что равно падению напряжения за счет резистора 30 Ом. Как и упоминалось выше, без сопротивления провода 0,345 Ом никакого потенциала на нулевом проводе бы не было. Данный резистор создал в цепи сопротивление, которое позволило распределиться току по двум участкам с силами обратно пропорциональными сопротивлениям этих участков:
- Участок между человеком и заземлителем источника питания — это зона растекания (локальная земля).
- Участок схемы, помеченный голубым цветом, имеет нулевой потенциал.
Перекос фаз. Что это такое и с чем он связан? Как исправить?
Одним из выдающихся благ цивилизации является электричество. Благодаря тому, что это открытие в наше время так распространено, жизнь общества в целом, и каждого человека в отдельности, значительно упростилась и стала более комфортной.
Вместе с тем, время от времени, в электросети могут возникать трудности, требующие решения. С ростом средней мощности бытовых приборов и техники, установленной в одном месте, например, в квартире, нередко возникает явление, называемое перекосом фаз.